Complications of Urinary Diversion

Jennifer L. Dodson, M.D.
Department of Urology
Johns Hopkins University

Types of Diversion

- Conduit Diversions
 - Ileal conduit
 - Colon conduit

- Continent Diversions
 - Continent catheterizable reservoir
 - Continent rectal pouch
Overview of Complications

- Mechanical
 - Stoma problems
 - Bowel obstruction
 - Ureteral obstruction
 - Reservoir perforation

- Metabolic
 - Altered absorption
 - Altered bone metabolism
 - Growth delay
 - Stones
 - Cancer

Conduit Diversions

- Ileal Conduit:
 - Technically simplest
 - Segment of choice

- Colon Conduit:
 - Transverse or sigmoid
 - Used when ileum not appropriate (e.g., concomitant colon resection, abdominal radiation, short bowel syndrome, IBD)

- Early complications (<30 days): 20-56%
- Late complications: 28-81%

- Risks:
 - Abdominal radiation
 - Abdominal surgery
 - Poor nutrition
 - Chronic steroids

Farnham & Cookson, World J Urol, 2004
Complications of Ileal Conduit

<table>
<thead>
<tr>
<th>Complication</th>
<th>Early (%)</th>
<th>Late (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine leak</td>
<td>2% (9/356)</td>
<td>—</td>
</tr>
<tr>
<td>Bowel leak</td>
<td>2%</td>
<td>—</td>
</tr>
<tr>
<td>Sepsis</td>
<td>3% (7/236)</td>
<td>—</td>
</tr>
<tr>
<td>Acute pyelonephritis</td>
<td>3% (11/700)</td>
<td>18% (133/726)</td>
</tr>
<tr>
<td>Wound infection</td>
<td>7% (17/233)</td>
<td>2% (4/178)</td>
</tr>
<tr>
<td>Wound dehiscence</td>
<td>3% (11/326)</td>
<td>—</td>
</tr>
<tr>
<td>Gastrinestinal bleed</td>
<td>2% (2/90)</td>
<td>—</td>
</tr>
<tr>
<td>Abscess</td>
<td>2% (3/168)</td>
<td>—</td>
</tr>
<tr>
<td>Paralytic ileus</td>
<td>0% (14/238)</td>
<td>—</td>
</tr>
<tr>
<td>Conduit bleed</td>
<td>2% (3/178)</td>
<td>10% (18/178)</td>
</tr>
<tr>
<td>Intestinal obstruction</td>
<td>5% (16/318)</td>
<td>5% (42/878)</td>
</tr>
<tr>
<td>Ureteral obstruction</td>
<td>2% (14/610)</td>
<td>6% (56/939)</td>
</tr>
<tr>
<td>Parastomal hernia</td>
<td>—</td>
<td>2% (9/454)</td>
</tr>
<tr>
<td>Stomal stenosis</td>
<td>—</td>
<td>30% (43/143)</td>
</tr>
<tr>
<td>Stone formation</td>
<td>—</td>
<td>7% (5/822)</td>
</tr>
<tr>
<td>Excessive conduit length</td>
<td>—</td>
<td>9% (26/276)</td>
</tr>
<tr>
<td>Metabolic acidosis</td>
<td>—</td>
<td>13% (27/206)</td>
</tr>
<tr>
<td>Conduit infection</td>
<td>—</td>
<td>2% (2/90)</td>
</tr>
<tr>
<td>Vesciulus</td>
<td>—</td>
<td>7% (2/268)</td>
</tr>
<tr>
<td>Conduit stenosis</td>
<td>—</td>
<td>5% (11/220)</td>
</tr>
<tr>
<td>Conduit-enteric fistula</td>
<td>—</td>
<td>≤1%</td>
</tr>
</tbody>
</table>

Conduit: Bowel Complications

- **Paralytic ileus 18-20%**
 - Conservative management vs NGT
 - Consider TPN
- **Bowel obstruction 5-10%**
 - Causes: Adhesions, internal hernia
 - Evaluation: CT scan, Upper GI series
- **Anastomotic leak 1-5%**
 - Risk factors: bowel ischemia, radiation, steroids, IBD, technical error
- **Prevention:**
 - Pre-operative bowel prep
 - Attention to technical detail
 - Blood supply, tension-free anastomosis, realignment of mesentery
 - Farnham & Cookson, World J Urol, 2004
Conduit Complications

- Conduit necrosis:
 - Acute ischemia to bowel segment
 - Urgent re-exploration
- Conduit ischemia:
 - Stomal stenosis or stricture
- Conduit elongation:
 - Distal obstruction at fascia or stoma
- Prevention:
 - Attention to blood supply of segment
 - Periodic imaging post-operatively

Stoma Complications

- Most common long-term complication 25-60%
- Most common cause for re-operation
- Stomal Stenosis 10-25%
 - Cause: ischemia, fascial constriction, retraction, local skin changes, poorly fitting appliance
- Stomal Prolapse
- Parastomal Hernia 5-25%
 - Cause: gap between conduit and fascia

“Rosebud” Stoma (Campbell’s Urology, 8th Ed., 2004)
Parastomal Hernia (Farnham & Cookson, World J Urol, 2004)
Ureterointestinal Anastomosis

- Urinary leak 2%
 - Prevention: stents, drains, surgical technique
- Uretero-enteric stricture 4-7%
 - Potential renal damage
 - Cause: urinary leakage with fibrosis, anastomotic tension, ischemia of ureter, infection
 - Evaluation: IVP, CT scan, loopogram (if refluxing anastomosis)
 - Treatment: endoscopic balloon dilation or incision vs open reconstruction

Continent Diversion: Reservoir Complications

- Pouch stones 10%
 - Mostly struvite stones
 - Cause: chronic bacteriuria, urinary stasis, mucous, metabolic abnormalities, staples
 - Prevention: treatment of symptomatic infection, irrigation
 - Treatment: percutaneous vs open extraction
- Spontaneous perforation of reservoir: rare but potentially fatal
 - CT cystogram, clinical suspicion
 - Low threshold for exploration

CT scan of stone burden in Indiana Pouch
(Farnham & Cookson, World J Urol, 2004)
Incontinence

- Leakage: 1-8%
- Uninhibited pouch contractions
 - Tx: anticholinergics
- Poorly compliant reservoir
 - Tx: augmentation
- Incontinent mechanism
 - Tx: revision
- Urodynamic testing

Types of continence mechanisms:
- Nipple valves, tunneled Mitrofanoff
- Channels (Campbell’s Urology, 8th Ed, 2004)

Stomal Complications

- Difficulty catheterizing 3-18%
 - Cause: stomal stenosis or tortuosity of channel
 - Highest incidence in tunneled appendix
 - Prevention: in the OR, by stabilizing the channel, avoiding kinking, tension, or ischemia
 - Treatment: dilation vs stomal revision with V-flap

Appendiceal Continent Catheterizable Stoma
(Campbell’s Urology, 8th Ed, 2002)
Ureterointestinal Anastomosis

- Etiology and rates of leakage and stricture similar to conduit diversion
- Continent diversions usually use non-refluxing anastomosis
 - Decreased risk of upper tract deterioration,
 - May increase to risk of stenosis/stricture

Metabolic: Removed Bowel

- Resection of terminal ileum: 3.3-20%
 - B12 malabsorption/deficiency
 - Megaloblastic anemia, neurologic manifestations
- Resection of >60-100 cm ileum:
 - Bile Acid Malabsorption
 - Lipid malabsorption, hypertriglyceridemia
 - Steatorrheic diarrhea
 - Impaired absorption of fat-soluble vitamins: A, D, E, K
 - Increased risk of gallstone formation
 - Mills & Studer, J Urol, 1999; DeMarco & Koch, AUA Update Series, 2003
Malabsorption

- Resection of ileocecal valve:
 - Decreased transit time
 - Increased wet weight of stool
 - Diarrhea

- Resection of colon segment:
 - Right colon important for storage of stool

Metabolic: Removed Bowel

- Resection of ileocecal valve:
 - Decreased transit time
 - Increased wet weight of stool
 - Diarrhea

- Resection of colon segment:
 - Right colon important for storage of stool
Metabolic Acidosis

- Hyperchloremic acidosis
- Ileal conduit: 10-15%
- Continent diversion: 50%
- Ureterosigmoidostomy: 80%
- Treatment:
 - oral sodium bicarbonate
 - sodium citrate
 - potassium citrate

Metabolic: Interposed Bowel

- Bone demineralization
- Acidosis
 - carbonate and phosphate released from bone to buffer hydrogen ions
 - Acidosis inhibits production of 1, 25-dihydroxycholecalciferol
 - Acidosis activates osteoclast activity
 - Increased excretion of calcium in urine
- Rickets
- Osteomalacia
Stone Disease

- Upper tract stones:
 - Metabolic etiology
 - Chronic dehydration, concentrated urine
 - If large ileal resection, risk of enteric hyperoxaluria with calcium oxalate stone formation
 - Hypocitraturia
 - Hypercalciuria due to metabolic acidosis

Cancer risk

- Ureterosigmoidostomy:
 - > 200 cases of secondary malignancy reported
 - Age 25-30 yo: 477-fold increased risk
 - Age 55-60 yo: 8-fold increased risk over general population
 - Histology: adenoma, adenocarcinoma
 - Follow-up starting between 3-5 years post-op with yearly endoscopy, ultrasound

Austen & Kalble, J Urol, 2004
Cancer risk

- Conduit and continent diversions:
 - Variable histology

<table>
<thead>
<tr>
<th></th>
<th>No. Ileum</th>
<th>No. Colon</th>
<th>Total No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduit</td>
<td>12</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Continent:</td>
<td>35</td>
<td>28</td>
<td>63</td>
</tr>
<tr>
<td>Cystoplasty</td>
<td>30</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>Pouch/neobladder/rectal bladder</td>
<td>1</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Ileal ureter</td>
<td>4</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>Totals</td>
<td>47</td>
<td>34</td>
<td>81</td>
</tr>
</tbody>
</table>

Austen & Kalble, J Urol, 2004

Compliance & Access to Care

- Conduit diversions:
 - Appliances
 - Stomal nurse support
 - Follow-up

- Continent diversions:
 - Rectal pouch:
 - Follow-up
 - Catheterizable reservoir:
 - Catheters
 - Lubrication
 - Irrigation and frequent catheterization
 - Follow-up
Potential Research Questions

- Which is better in this context:
 - Conduit,
 - rectal reservoir, or
 - catheterizable reservoir?

- Major issues:
 - Complications: short and long-term
 - Costs: Follow-up and consumables
 - Cultural acceptance of different diversions

References: