Disaster Preparedness:
Public Health Infrastructure and
Perspectives on Community Resilience

October 16, 2013

Randolph Rowel, PhD
Morgan State University School of Community Health and Policy

Daniel Barnett, MD, MPH
Johns Hopkins Bloomberg School of Public Health
1. Describe the influences of perceived threat and efficacy on willingness to respond in public health emergencies.

2. Describe emergency scenario-specific patterns of response willingness.

3. Identify potential interventions to enhance response willingness within the public health emergency preparedness system.
Background
A Spectrum of Public Health Emergency Threats

- TIME Magazine cover: Bird Flu, Is Asia hatching the next human pandemic?
- Image of a tornado
- Image of a dirty bomb
Public Health Emergency Preparedness System

- Health Care Delivery Systems
- Homeland Security and Public Safety
- Communities
- Employers and Business
- Academic
- The Media

Source: IOM 2002
RWA Framework

- Collectively comprises necessary/sufficient elements for public health emergency preparedness response systems

“Willingness” to Respond

- State of being inclined or favorably predisposed *in mind*, individually or collectively, toward specific responses
- Numerous personal and contextual factors may contribute
- Beliefs, understandings, and role perceptions
- *Scenario-specific*
Johns Hopkins Public Health Infrastructure Response Survey Tool (JH-PHIRST)
JH~PHIRST: Design and Concept

- Johns Hopkins ~ Public Health Infrastructure Response Survey Tool (JH~PHIRST)
- Adopt Witte’s Extended Parallel Processing Model (EPPM)
 - Evaluates impact of threat and efficacy on human behavior
- Online survey instrument
- All-hazards scenarios
 - Weather-related
 - Pandemic influenza
 - ‘Dirty’ bomb
 - Inhalational anthrax
The Extended Parallel Process Model (EPPM)

MESSAGE COMPONENTS

Perceived Threat?
- Susceptibility/Severity
 - NO → Disregard → Message Rejection
 - YES → Danger Control → Message Acceptance

Perceived Efficacy?
- Self-Efficacy/Response Efficacy
 - YES → Fear Control → Message Rejection
 - NO → Message Rejection
Threat Appraisal

- Susceptibility
 - “A _______ disaster is likely to occur in this region. ”
- Severity
 - “If it occurs, a _______ disaster in this region is likely to have severe public health consequences. ”

Efficacy Appraisal

- Self-efficacy
 - “I would be able to perform my duties successfully in the event of a _______ disaster. ”
- Response efficacy
 - “If I perform my role successfully it will make a big difference in the success of a response to a _______ disaster. ”
“Concerned and Confident”

- Four broad categories identified in the JH ~ PHIRST assessment tool:
 - Low Concern/Low Confidence (low threat/low efficacy)
 - Educate about threat, build efficacy
 - Low Concern/High Confidence (low threat/high efficacy)
 - Educate about threat, maintain efficacy
 - High Concern / Low Confidence (high threat/low efficacy)
 - Improve skill, modify attitudes
 - High Concern / High Confidence (high threat/high efficacy)
 - Reinforce comprehension of risk and maintain efficacy
Some Projects Launched to Date

- Hospital Workers
- Local Health Departments
Overarching findings

- “Concerned and confident” (HT/HE) profile is, in general, most strongly associated with WTR across all hazards
- Perceived efficacy outweighs perceived threat
- Compared to the other three scenarios, the dirty bomb scenario has consistently lower rates of agreement for willingness to respond and related constructs
Hospital Workers
Survey Distribution

- Survey distributed to all Johns Hopkins Hospital Workers (n=18,612)
- January – March 2009
- Response Rate = 18.4% (n=3,426)
Hospital Workers’ Self-Reported Willingness to Respond

<table>
<thead>
<tr>
<th></th>
<th>Pandemic Influenza</th>
<th>Radiological (‘dirty’) Bomb</th>
</tr>
</thead>
<tbody>
<tr>
<td>If required</td>
<td>82.5%</td>
<td>72%</td>
</tr>
<tr>
<td>If asked</td>
<td>72%</td>
<td>61%</td>
</tr>
<tr>
<td></td>
<td>Pandemic Influenza</td>
<td>Radiological (‘dirty’) Bomb</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td>Physicians</td>
<td>Nurses</td>
</tr>
<tr>
<td>If required</td>
<td>95.7%</td>
<td>78.3%</td>
</tr>
<tr>
<td>If asked</td>
<td>84.5%</td>
<td>56.5%</td>
</tr>
<tr>
<td>Regardless of Severity</td>
<td>83.0%</td>
<td>50.0%</td>
</tr>
</tbody>
</table>
Hospital Workers’ Willingness to Respond and EPPM if required

<table>
<thead>
<tr>
<th>Extended Parallel Processing Model Category</th>
<th>Low threat, Low Efficacy</th>
<th>Low threat, High Efficacy</th>
<th>High threat, Low Efficacy</th>
<th>High threat, High Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Pan Flu</td>
<td>1.00</td>
<td>Ref</td>
<td>13.09</td>
<td>7.67, 22.34</td>
</tr>
<tr>
<td>Dirty Bomb</td>
<td>1.00</td>
<td>Ref</td>
<td>12.90</td>
<td>7.80, 21.34</td>
</tr>
</tbody>
</table>
Key Findings in Hospital Workers

- Concerned and confident profile (HT/HE) vs LT/HE profile
- Perceived need for training high
- Nurses less likely to respond than physicians [OR(95%CI): 0.61 (0.45, 0.84)] in a pandemic influenza emergency
- Perceived threat had little impact on willingness in the radiological ‘dirty bomb’ emergency scenario
Potential Response Willingness Interventions for Hospital Employees

- Hospital-based communication and training strategies to boost employees' response willingness, including:
 - promoting pre-event plans for dependents;
 - ensuring adequate supplies of personal protective equipment, vaccines and antiviral drugs for all hospital employees;
 - **efficacy-focused training**
How Can We Further Address Willingness Gaps?
Curricular Intervention

- Public Health Infrastructure Training (PHIT)
 - Designed to address the attitudinal and behavioral gaps in willingness-to-respond
 - Objective: Extend levels of threat awareness, self- and response-efficacy
 - Goal: Increased system capacity with higher numbers of workers who are willing to respond to all hazards
 - Train-the-trainer format
 - Seven hours of content delivered over a 6-month period
 - Combines a variety of learning modalities in three phases of training
 - Face-to-face lecture and discussion; online learning; independent activities; case scenarios; tabletop exercises; role-playing; knowledge assessments; peer critiques
PHIT Curriculum: TOC

- Phase 1: **Facilitator-Led Discussion** (2 hours)
 - Part 1: Overview of Scenarios and Public Health’s Role
 - Part 2: Emergency Scenario Contingency Planning
- Phase 2: **Independent Learning Activities** (3 hours)
- Phase 3: **Group Experiential Learning** (2 hours)
 - Part 1: Tabletop Exercise
 - Part 2: Role-Playing Exercise
 - Part 3: Debriefing

While the content and phases are mostly fixed, local contextual examples are encouraged & formats for training delivery are flexible and scalable to meet the unique needs of health departments.
Pre- vs. Post-Intervention Data (Local Health Departments)
JH~PHIRST Baseline Comparisons to Resurvey: WTR (Severity)

Willingness-to-Respond: Regardless of Severity
Baseline – Resurvey 1 – Resurvey 2

<table>
<thead>
<tr>
<th></th>
<th>Weather-Related</th>
<th>Pandemic Influenza</th>
<th>Radiological (‘dirty’) Bomb</th>
<th>Anthrax Bioterrorism</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>82% ↓ 78% ↓ 75%</td>
<td>85% ↓ 84% ↓ 78%</td>
<td>60% ↓ 58% ↓ 55%</td>
<td>78% ↓ 67% ↓ 66%</td>
</tr>
<tr>
<td>INTERVENTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>79% ↑ 80% ↓ 79%</td>
<td>83% ↑ 85% ↓ 82%</td>
<td>57% ↑ 73% ↓ 71%</td>
<td>69% ↑ 77% ↓ 73%</td>
</tr>
</tbody>
</table>
JH~PHIRST Baseline Comparisons to Resurvey Findings: Efficacy

Self-Efficacy
Baseline – Resurvey 1 – Resurvey 2

<table>
<thead>
<tr>
<th></th>
<th>Weather-Related</th>
<th>Pandemic Influenza</th>
<th>Radiological ('dirty') Bomb</th>
<th>Anthrax Bioterrorism</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>84% ↓ 80% ↑81%</td>
<td>87% ↓ 85% ↓82%</td>
<td>50% ↓ 52%→52%</td>
<td>71% ↓ 68% ↓66%</td>
</tr>
<tr>
<td>INTERVENTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>83% ↑ 87% →87%</td>
<td>85% ↑ 90% ↓87%</td>
<td>50% ↑ 79% ↓75%</td>
<td>66% ↑ 80% ↓79%</td>
</tr>
</tbody>
</table>
JH~PHIRST Baseline Comparisons to Resurvey Findings: Efficacy

<table>
<thead>
<tr>
<th>Response-Efficacy</th>
<th>Weather-Related</th>
<th>Pandemic Influenza</th>
<th>Radiological (‘dirty’) Bomb</th>
<th>Anthrax Bioterrorism</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85% ↓ 76% ↓ 74%</td>
<td>84% ↑ 86% ↓ 77%</td>
<td>69% ↓ 63% → 63%</td>
<td>78% ↓ 71% ↓ 68%</td>
<td></td>
</tr>
<tr>
<td>INTERVENTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83% ↑ 86% ↓ 83%</td>
<td>85% ↑ 87% ↓ 85%</td>
<td>70% ↑ 82% ↓ 78%</td>
<td>76% ↑ 82% ↓ 79%</td>
<td></td>
</tr>
</tbody>
</table>
Participants reported **increased understanding of the importance of their roles in the context of a public health emergency response**, and the potential impacts on the health department and the community if they chose not to respond.

The importance of being confident in the safety of one’s **family** was discussed by participants in multiple clusters as particularly important related to response willingness.
Thank You

Questions?
Randolph.Rowel@morgan.edu
dbarnett@jhsph.edu