What Does the Research Tell Us?

Jeffrey S. Hickman, Ph.D.
Virginia Tech Transportation Institute
Center for Truck and Bus Safety
Behavioral Analysis and Applications

April 18th, 2011
Symposium on Prevention of Occupationally-Related Distracted Driving
Acknowledgments

- Johns Hopkins Educational and Research Center
- Research was funded by the Federal Motor Carrier Safety Administration
 - Views and opinions expressed in this presentation do not reflect those of any government agency
- Rich Hanowski, Rebecca Olson, and Joseph Bocanegra
- Trucking fleets and drivers who participated in the naturalistic truck studies
- DriveCam
What is Driver Distraction and Inattention?

- Driver distraction:
 - Diversion of attention away from activities critical for safe driving toward non-driving activities (e.g., talking on a cell phone, texting, etc.)

- Driver inattention
 - Diminished attention to activities that are critical for safe driving in the absence of a non-driving activity (e.g., fatigue, alcohol, etc.)
What is an Occupational Driver?

- An occupational driver is defined as someone who drives at least once per week for occupational purposes (Murray et al., 2003)
 - Truck driver
 - Bus/transit driver
 - Taxi driver
 - Sales (e.g., pharmaceutical representatives)
 - Emergency services
 - Taxi driver
 - Police
Occupational Driving Crashes

- Crashes are the leading cause of occupational death (BLS, 2004)
- Occupational drivers are over-involved in road crashes compared to non-occupational drivers (Haycock et al., 1996)
 - Similar results when controlling for exposure (large trucks vs. passenger cars; see Traffic Safety Facts)
- Reason for this discrepancy is unclear
 - Unique factors operating within the organizational context
 - Willis et al. (2006) found that work pressure was related to driving while distracted
Driver Distraction Research

- Few studies on driver distraction until 2000 (~30 total articles)
 - Now roughly 50 articles per year
- Few of these studies address occupational driver distracted driving
 - However, results are still pertinent to this area
• Precise knowledge about crash risk
• Information about important circumstances and scenarios that lead to crashes

Epidemiological Data Collection

• Reactive
• Very limited pre-crash information

Large-Scale Pseudo Naturalistic Data Collection

• “Natural” driver behavior
• Detailed pre-crash/crash info
 • Distraction
 • Fatigue
 • Aggressive driving
 • Driver errors
 • Vehicle dynamics
• Potential validation of surrogate measures

Empirical Data Collection

• Proactive
• Provides important ordinal crash risk info

• Imprecise, relies on unproven safety surrogate
• Experimental situations modify driver behavior
Naturalistic Method

- Study participants use an instrumented vehicle for an extended period (e.g., several months to one year)
- No experimenter present; no specific instructions
- Highly capable data acquisition systems (well beyond EDRs)
- Data collected continuously
- Able to get detailed pre-crash/crash information along with routine driving behaviors
Empirical Simulator Studies

- Studies found that drivers while talking had (NSC, 2010):
 - Longer brake response times of 130 ms - 250 ms
 - Did not scan their mirrors as much
 - Failed to detect objects in the environment
- Same studies found that drivers:
 - Reduced their speed
 - Increased their forward headway to the lead vehicle
- 58% or drivers talk on a cell phone while driving, yet the crash rate has shown a downward trend
In 2008, 22% of all crashes in GES involved distraction

Naturalistic driving study with 100 passenger cars found distraction/inattention in (Klauer et al., 2006):

- 78% of crashes
- 65% of near-crashes

11% of large truck crashes in the LTCCS were attributed to internal or external distraction

- Percentage reflects the primary reason and not an associative factor
Occupational Driving Research Gap

- Of the distraction research, most directed at non-occupational drivers
- Is driver distraction a safety issue in occupational driving?
- VTTI studies focused on commercial motor vehicle (CMV) drivers and used continuously collected naturalistic data
 - Using video, able to determine what driver was doing *prior* to safety-critical events
 - “Instant replay”
Olson et al. (2009) used recent data from two separate studies:

- 203 drivers, 7 fleets, 55 trucks, 3 million miles
- Study 1: ~12 weeks per driver
- Study 2: ~4 weeks per driver
- 4,452 safety-critical events
 - 21 crashes
 - 197 near-crashes
 - 3,019 crash-relevant conflicts
 - 1,215 unintentional lane deviations
- 19,888 baseline epochs (normal driving)
Analysis Approach

- Video review of all safety-critical events \((n = 4452) \) and baselines/normal driving \((n = 19,888) \)
- Determination made as to what driver was doing just prior to event onset (e.g., when lead vehicle began to brake)
 - Some events and baseline epochs involved drivers engaged in non-driving (distraction) tasks
- Odds ratios used to assess risk associated with different tasks (comparing event data with non-event data)
- Eye glance analysis conducted to determine where driver was looking prior to event (6 second epoch)
Is Distraction an Issue in CMV Drivers?

- 60% of the safety-critical events had some type of driver distraction

<table>
<thead>
<tr>
<th>Event Type</th>
<th>All Safety-Critical Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>All safety-critical events</td>
<td>59.9%</td>
</tr>
<tr>
<td>Crashes</td>
<td>71.4%</td>
</tr>
<tr>
<td>Near-crashes</td>
<td>46.2%</td>
</tr>
<tr>
<td>Crash-relevant conflicts</td>
<td>53.6%</td>
</tr>
<tr>
<td>Unintentional lane deviations</td>
<td>77.5%</td>
</tr>
</tbody>
</table>
Sample of Non-Driving Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>Frequency of Safety-Critical Events</th>
<th>Frequency of Baselines</th>
<th>Mean Eyes Off Forward Road Time (out of 6 sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text message on cell phone</td>
<td>23.24</td>
<td>9.69 - 55.73</td>
<td>31</td>
<td>6</td>
<td>4.6 sec</td>
</tr>
<tr>
<td>Interact with/look at dispatching device</td>
<td>9.93</td>
<td>7.49 - 13.16</td>
<td>155</td>
<td>72</td>
<td>4.1 sec</td>
</tr>
<tr>
<td>Write on pad, notebook, etc.</td>
<td>8.98</td>
<td>4.73 - 17.08</td>
<td>28</td>
<td>14</td>
<td>4.2 sec</td>
</tr>
<tr>
<td>Use calculator</td>
<td>8.21</td>
<td>3.03 - 22.21</td>
<td>11</td>
<td>6</td>
<td>4.4 sec</td>
</tr>
<tr>
<td>Look at map</td>
<td>7.02</td>
<td>4.62 - 10.69</td>
<td>56</td>
<td>36</td>
<td>3.9 sec</td>
</tr>
<tr>
<td>Dial cell phone</td>
<td>5.93</td>
<td>4.57 - 7.69</td>
<td>132</td>
<td>102</td>
<td>3.8 sec</td>
</tr>
<tr>
<td>Talk/listen to hand-held phone</td>
<td>1.04</td>
<td>0.89 - 1.22</td>
<td>195</td>
<td>837</td>
<td>1.3 sec</td>
</tr>
<tr>
<td>Talk/listen to hands-free phone</td>
<td>0.44</td>
<td>0.35 - 0.55</td>
<td>91</td>
<td>901</td>
<td>1.6 sec</td>
</tr>
<tr>
<td>Talk/listen to CB radio</td>
<td>0.55</td>
<td>0.41 - 0.75</td>
<td>50</td>
<td>399</td>
<td>1.3 sec</td>
</tr>
</tbody>
</table>
Video provided by DriveCam
Video provided by DriveCam
Video provided by DriveCam
Video provided by DriveCam
| Front | FWD 0.03 | LAT -0.07 | Time -8.00 | 6 MPH GPS | Rear |
Driving Transportation With Technology
Olson et al. Limitations

- Relatively few crashes
- Relatively few drivers/trucks/miles
- FMCSA-funded study using DriveCam data was conducted to address these limitations...
Hickman et al. (2010) Distracted Driving Study

- 13,305 vehicles (trucks and buses)
- 1,085 crashes; 39,036 near-crashes and events
- 211,171 baselines

<table>
<thead>
<tr>
<th>Tertiary Task</th>
<th>Odd Ratio</th>
<th>Lower Conf Limit</th>
<th>Upper Conf Limit</th>
<th>Freq of Safety Critical Events</th>
<th>Freq of Baselines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialing Cell Phone</td>
<td>3.51*</td>
<td>2.89</td>
<td>4.24</td>
<td>165</td>
<td>256</td>
</tr>
<tr>
<td>Talk/Listen Hands-Free Cell Phone</td>
<td>0.65*</td>
<td>0.56</td>
<td>0.76</td>
<td>194</td>
<td>1,626</td>
</tr>
<tr>
<td>Talk/Listen Hand Held Cell Phone</td>
<td>0.89</td>
<td>0.80</td>
<td>1.00</td>
<td>372</td>
<td>2,266</td>
</tr>
<tr>
<td>Reaching for Bluetooth Device</td>
<td>3.38*</td>
<td>2.64</td>
<td>4.31</td>
<td>104</td>
<td>168</td>
</tr>
<tr>
<td>Reaching for Cell Phone</td>
<td>3.74*</td>
<td>2.97</td>
<td>4.71</td>
<td>122</td>
<td>178</td>
</tr>
</tbody>
</table>
Comparison of Results

<table>
<thead>
<tr>
<th>Tertiary Task</th>
<th>Odds Ratios for Tractor Trailers/Tankers Only in Hickman et al. (2010)</th>
<th>Odds Ratios in Olson et al. (2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialing Cell Phone</td>
<td>5.44*</td>
<td>5.93*</td>
</tr>
<tr>
<td>Talk/Listen Hands-Free Cell Phone</td>
<td>0.58*</td>
<td>0.44*</td>
</tr>
<tr>
<td>Talk/Listen Hand-Held Cell Phone</td>
<td>1.01</td>
<td>1.04</td>
</tr>
<tr>
<td>Reaching for Bluetooth Device</td>
<td>4.43*</td>
<td>6.72*</td>
</tr>
<tr>
<td>Reaching for Cell Phone</td>
<td>7.60*</td>
<td>Included in dial cell phone</td>
</tr>
<tr>
<td>Text/Email/Web</td>
<td>+</td>
<td>23.24*</td>
</tr>
<tr>
<td>Food/Drink</td>
<td>1.53*</td>
<td>1.01</td>
</tr>
</tbody>
</table>

* Asterisk indicates a significant odds ratio. These ratios are also shown in bold.
+ odds ratio calculation was only performed across all vehicle types
Odds Ratios for Cell Phone Policy/Law

<table>
<thead>
<tr>
<th>Cell Phone Policy</th>
<th>Frequency of Cell Phone Use with Policy/Law</th>
<th>Frequency of No Cell Phone Use without Policy/Law</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleet Cell Phone Policy</td>
<td>8,787</td>
<td>1,897</td>
<td>0.83*</td>
<td>0.78 - 0.87</td>
</tr>
<tr>
<td>State Cell Phone Law</td>
<td>4,526</td>
<td>2,987</td>
<td>0.97</td>
<td>0.94 - 1.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy/Law</th>
<th>Obeyed Cell Phone Law/Policy</th>
<th>Violated Cell Phone Law/Policy</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only a State Hand-Held Law</td>
<td>12,120</td>
<td>521</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Only a Carrier No Cell Phone Policy</td>
<td>56,502</td>
<td>1,428</td>
<td>1.7</td>
<td>1.5 - 1.9</td>
</tr>
<tr>
<td>Only a Carrier Hand-Held Policy</td>
<td>8,689</td>
<td>89</td>
<td>4.2</td>
<td>3.3 - 5.3</td>
</tr>
</tbody>
</table>
Study Conclusions

- Driver distraction is a prevalent contributing factor
 - Occupational drivers engaged in work-related tasks while driving
 - High-risk tasks had the highest eyes off road time
- Enforcement is critical in distraction policy and legislation
 - Hand-held cell phone use rate in New York rebounded to pre-law levels after law enacted (McCurtt & Geary, 2003, 2004)
 - Relationship between the frequency of safety-belt citations and safety-belt use (Campbell, 1988; Kim, 1991)
 - Perception of being ticketed for a safety-belt infraction was enough to alter safety-belt use (Chaudhary et al. 2004)
Research Recommendations

- Education to highlight the importance of eyes on forward roadway and scanning
 - Dangers of performing work-related tasks
- Policies to curb use of in-vehicle devices that draw attention away from forward roadway
 - Cell phone, texting, dispatching device
 - Enforcement is critical
- Is talking OK?
 - Dialing and/or reaching are necessary to operate hand-held phone
 - “true hands-free” and CB appear to be safe
- Re-design of dispatching devices
Thank you!

Questions?

jhickman@vtti.vt.edu