I. Dynamic Treatment Regimes in Public Health

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-9:05 am</td>
<td>Introduction to Session</td>
</tr>
</tbody>
</table>
| 9:05-9:35 am | Estimation of Survival Distributions for Treatment Regimes in Two Stage Oncology Trials
Marie Davidian, NC State University |
| 9:35-9:40 am | Discussion |
| 9:40-10:25 am | Estimating Mean Response as a Function of Treatment Duration in an Observational Study
Anastasios A. (Butch) Tsiatis, NC State University |
| 10:25-10:30 am| Discussion |
| 10:30-10:45 am| Break |
| 10:45-11:45 am| SMART Designs for Developing Dynamic Treatment Regimes
Susan A. Murphy, University of Michigan |
| 11:45-noon | Discussion |
I. Dynamic Treatment Regimes in Public Health

Objectives of this session:

- Introduce the notion of a *dynamic treatment regime* (or *adaptive treatment strategy*) through two case studies (*Marie*, *Butch*)

- Describe methods for making inference about particular dynamic treatment regimes from *randomized studies* and from *observational data* (*Marie*, *Butch*)

- Describe a general framework for thinking about and *designing* dynamic treatment regimes and in particular for identifying the “*best*” dynamic treatment regime (*Susan*)
Dynamic treatment regime:

- “Individually-tailored” sequence of treatment steps
- The next step of treatment is determined according to subject outcomes and information up to that point
- Consistent with clinical practice
I. Dynamic Treatment Regimes in Public Health

Dynamic treatment regime:

- “Individually-tailored” *sequence* of treatment steps
- The *next step* of treatment is determined according to *subject outcomes and information* up to that point
- Consistent with *clinical practice*

Issues:

- What are the *options* at each step?
- What *information* should be used to select an option at each step?
- What should be the *timing* of the steps?
- What is the “*best*” sequence of treatment steps?
- From what kinds of *studies* can we learn about all of this?
Estimation of Survival Distributions for Treatment Regimes in Two Stage Oncology Trials

Marie Davidian
Department of Statistics
North Carolina State University

http://www.stat.ncsu.edu/~davidian

(Joint work with A.A. Tsiatis, J. Lunceford, A. Wahed)
1. Dynamic treatment regimes for cancer
2. Randomized oncology trials to compare dynamic regimes
3. Case study: CALGB 8923
4. Analysis
5. Wrinkles
6. Discussion
7. Demonstration using potential outcomes
8. References
1. Dynamic treatment regimes for cancer

Goals of cancer therapy:

- *Induce* remission of disease, usually using powerful chemotherapeutic agents

- *Maintain* remission as long as possible before relapse/recurrence, e.g., by administering additional agents that intensify or augment the effects of the initial induction therapy
1. Dynamic treatment regimes for cancer

A particular dynamic treatment regime: For a given patient

- **Step 1**: Treat with one or more courses of first-line *induction* chemotherapy A
- **Intermediate outcome**: Observe whether “*response*” occurs
- **Step 2**: If “*response*” occurs, give *maintenance* therapy B ...
 - ...else, if “*response*” does not occur (so A *did not induce* a response), do something else, e.g., try a *second-line* therapy B'
- **Response** typically defined as complete or partial remission, tumor shrinkage, etc.

Primary outcome of interest: E.g., in cancer, *disease-free survival time*
Schematically: The specific regime “Give first-line induction therapy A followed by maintenance B if response else give second-line therapy $B’$”

- **Step 1**
 - (Primary Trt) A
 - (Intermediate Outcome) Response

- **Step 2**
 - (Secondary Trt) B'
1. Dynamic treatment regimes for cancer

Options: There may be *more than one* possible regime

- More than one possible *first-line induction* treatment (*Step 1*), e.g., two options A_1 and A_2

- More than one possible *maintenance* treatment if response occurs (*Step 2*), e.g., two options B_1 and B_2

- More than one possible *second-line induction* treatment if no response occurs (*Step 2*), e.g., two options B'_1 and B'_2
1. Dynamic treatment regimes for cancer

Eight possible regimes or strategies:

1. A_1 followed by B_1 if response, else B'_1
2. A_1 followed by B_1 if response, else B'_2
3. A_1 followed by B_2 if response, else B'_1
4. A_1 followed by B_2 if response, else B'_2
5. A_2 followed by B_1 if response, else B'_1
6. A_2 followed by B_2 if response, else B'_2
7. A_2 followed by B_1 if response, else B'_1
8. A_2 followed by B_2 if response, else B'_2

Question: How do these eight regimes compare on the basis of disease-free survival time?
2. Randomized trials for dynamic regimes

Possible ways to compare:

- An *eight-arm* randomized trial?
- Combine information from a *series* of trials?
- *Something else*?
2. Randomized trials for dynamic regimes

“SMART” Trial: Sequential Multiple Assignment Randomized Trial (Randomization at ●s)
2. Randomized trials for dynamic regimes

In red: Regime “A_1 followed by B_1 if response else B'_1”
2. Randomized trials for dynamic regimes

SMART Trials: Susan will lay out a rationale and framework for this kind of trial for *designing* and *comparing* dynamic treatment regimes!

- As long as the *number of options* at each “*decision node*” is the same with same probabilities, analysis is *straightforward*

- “*Balanced*”

It turns out: A certain kind of “*not quite as SMART*” trial is common in oncology . . .

- Analysis is a little more fancy . . .
3. Case study: CALGB 8923

Cancer and Leukemia Group B (CALGB) Protocol 8923: A trial with two randomizations, conducted in early 1990s

Background: Acute myelogenous leukemia (AML)

- At the time, standard induction chemotherapy (daunorubicin + cytarabine)

- Standard chemotherapy \Rightarrow myelosuppression \Rightarrow increased risk of death due to infection or bleeding

- Add to standard chemotherapy + granulocyte-macrophage colony-stimulating factor (GM-CSF) to reduce risk of these complications (but could possibly worsen leukemia...)

- Standard chemotherapy might be followed by “intensification treatment” if there is a response
3. Case study: CALGB 8923

As before:

- **Step 1** options: $A_1 =$ Standard chemotherapy, $A_2 =$ Standard chemotherapy + GM-CSF

- *If response*, **Step 2** options: $B_1, B_2 =$ “intensification” treatments I and II
3. Case study: CALGB 8923

Common oncology trial design: “Two stage randomization”

- After enrollment, randomize all subjects to induction therapies, e.g., A_1 or A_2 (“stage 1 randomization”)
- Observe intermediate outcome, e.g., “response”
- Randomize responding subjects to maintenance therapies, e.g., B_1 or B_2 (“stage 2 randomization”)
- Subjects not responding follow up with their physicians (no “stage 2” randomization; only option)
- Continue to monitor all subjects for the outcome of interest, survival time
- Sometimes: The nonresponders are randomized at stage 2, responders are not
3. Case study: CALGB 8923

Four possible regimes:

1. A_1 followed by B_1 if response else follow up = A_1B_1
2. A_1 followed by B_2 if response else follow up = A_1B_2
3. A_2 followed by B_1 if response else follow up = A_2B_1
4. A_2 followed by B_2 if response else follow up = A_2B_2

Question: How do these four regimes compare on the basis of disease-free survival time?

- E.g., mean disease-free survival time, proportion surviving without disease after 1 year, etc.
- Which regime to recommend?
3. Case study: CALGB 8923

CALGB 8923:

- Double-blind, placebo-controlled, two stage randomization trial
- \(A_1 = \) standard chemotherapy + placebo \(A_2 = \) standard chemotherapy + GM-CSF
- 338 elderly (> 60 years old) patients with AML
- “Response” = complete remission
- \(B_1, B_2 = \) intensification treatments I and II
- Goal: Compare the four regimes on the basis of disease-free survival
3. Case study: CALGB 8923

Schematic of CALGB 8923: Randomization at ●s
2. Randomized trials for dynamic regimes

Regime A_1B_1:
4. Analysis

Standard analysis:

- Compare *response rates* to A_1 and A_2
- Compare *survival* between B_1 and B_2 among *responders*
- Compare *survival* between A_1 and A_2, regardless of subsequent response/randomization

Issues:

- Does not address *directly* the question of interest
- An induction therapy (A) may yield *higher proportion of responders* but also have other effects that render subsequent intensification treatments (B) *less effective*
- “*Delayed effects*” (Susan)
4. Analysis

Question of interest: For each regime $A_j B_k$, $j = 1, 2$, $k = 1, 2$

- *Estimate* the mean disease-free survival time under regime $A_j B_k$
- I.e., estimate mean disease-free survival if the entire AML population were to follow regime $A_j B_k$
- “Following” $A_j B_k$ means give A_j initially followed by B_k if response else follow up

How to estimate this quantity from the data in the trial?
4. Analysis

Basic idea: To *estimate the mean* for $A_j B_k$, use data from all subjects whose *actual experience* is *consistent with* having followed $A_j B_k$

- **Assume** that whether response occurs depends only on A
- All subjects receiving A_j who *respond* and then are randomized to B_k are *consistent with* $A_j B_k$
- All subjects receiving A_j who *do not respond* and hence are not randomized at stage 2 are *also consistent with* $A_j B_k$
- **Key:** Must *combine* survival times from these subjects in an *appropriate way* . . .

An appropriate way: This is an “*unbalanced*” SMART trial

- \Rightarrow A *weighted average* of survival times
- Consider this *heuristically* . . .
4. Analysis

Consider A_1 only (A_2 analogous): Ideally, suppose everyone were randomized to A_1B_1

- Nonresponders to A_1 \Rightarrow follow up
- Responders \Rightarrow all get B_1
- Natural estimator: Sample average of all survival times (unweighted)

In the trial: Suppose responders are randomized to B_1 or B_2 with probability $1/2$

- Nonresponders to A_1 \Rightarrow follow up (same as before)
- Half of responders get B_1, half get B_2
- The half who get B_2 have missing survival times as far as A_1B_1 is concerned
4. Analysis

Result: To estimate mean for A_1B_1 from the trial

- The \textit{nonresponders} represent themselves either way \Rightarrow weight = 1
- Each \textit{responder} represents him/herself and another similar subject who got randomized to B_2 \Rightarrow weight = 2
- Usual “\textit{inverse probability weighting}” for missing data
- To estimate mean for A_1B_2, switch the roles
4. Analysis

In symbols: Let

\[T_i = \text{survival time for subject } i, \ i = 1, \ldots, n, \]
\[R_i = 1 \text{ if } i \text{ responds to } A_1, \ R_i = 0 \text{ if not} \]
\[Z_i = 1 \text{ for a responder randomized to } B_1, \ Z_i = 2 \text{ for } B_2 \]
\[P(Z_i = 1 | R_i = 1) = \pi \ (= 1/2 \text{ in previous}) \]

Estimators: \[n^{-1} \sum_{i=1}^{n} Q_i T_i \quad \text{or} \quad \left(\sum_{i=1}^{n} Q_i \right)^{-1} \sum_{i=1}^{n} Q_i T_i, \]

\[Q_i = 1 - R_i + R_i I(Z_i = 1) \pi^{-1} \]

- \[Q_i = 0 \text{ if } i \text{ is inconsistent with } A_1 B_1 \text{ (i.e., is consistent with } A_1 B_2) \]
- \[Q_i = 1 \text{ if } R_i = 0 \]
- \[Q_i = \pi^{-1} \text{ if } R_i = 1 \text{ and } Z_i = 1 \]
- To estimate \(S(t) = P(T_i > t) \), estimate \(F(t) = 1 - S(t) \) by replacing \(T_i \) by \(I(T_i \leq t) \)
5. Wrinkles

Survival outcome: Subjects may *die* before having a chance to respond

- *Nonresponders* at the time of death, $R_i = 0$

Censoring: Survival time may be right-censored at time C_i

- Assume $K_1(t) = P(C_i > t \mid A_1)$
- Consider *restricted survival time*, i.e., survival up to time L such that $K_1(L) > 0$
- Observe $V_i = \min(T_i, C_i)$ and $\Delta_i = I(T_i < C_i)$
- If T_i is *not censored* for subject i, $V_i = T_i$, i represents $K_1^{-1}(V_i)$ individuals, including him/herself, who *could have* been uncensored
- *Estimator* becomes

$$n^{-1} \sum_{i=1}^{n} \frac{\Delta_i Q_i}{K_1(V_i)} V_i$$
5. Wrinkles

Consent of responders: In CALGB 8923, some subjects who *did respond refused to be randomized* at the second stage

- In CALGB 8923, \(\sim 90\% \) consent rate among responders
- *“Intention to treat”* perspective: Consider instead *offering* \(A_j \) followed by *offering* \(B_k \) if response else follow up
- *Redefine*, e.g., “\(A_1 \) followed by \(B_k \) if response *and consent* else follow up” (so make comparisons without regard to differential rates of consent)
- So *redefine* \(R_i = 1 \) if subject \(i \) *both* responds *and consents* to further participation
- … As opposed to attempt to ask the original *causal* question, with this *noncompliance* as a nuisance (\(\Rightarrow \) *observational study*)
6. Discussion

Remarks:

- Could equally well randomize subjects up front to regimes and use these same estimators
- Fancier (in terms of efficiency) estimators are possible
- Methods for testing also possible
- If SMART trial is balanced, no need to do weighting

Looking forward to Susan:

- Dynamic treatment regimes are what is done in clinical practice
- The regimes here are simple and preconceived: two stages only, decision rule at step 2 based on the single variable “response”
- Methods to design dynamic treatment regimes are needed
7. Demonstration using potential outcomes

One way to formalize the rationale for weighting: Again consider A_1 regimes only (A_2 analogous)

- Suppose there are n subjects randomized to A_1 and that subject i has potential outcomes T_{11i}, T_{12i}
- $T_{1ki} = \text{survival time } i \text{ would have if } i \text{ were to follow (or be offered)} A_1B_k$, $k = 1, 2$

Question of interest: Estimate mean disease-free survival if the entire AML population were to follow regime A_1B_k

- Distributions of the T_{1k} represent survival in the population if all subjects followed A_1B_k, $k = 1, 2$
- \Rightarrow Want to estimate $\mu_{1k} = E(T_{1ki})$
7. Demonstration using potential outcomes

Of course: Do not observe both of T_{11i}, T_{12i} for each i

Do observe: $(R_i, R_iZ_i, T_i), i = 1, \ldots, n$

- $R_i = 1$ if i responds, $R_i = 0$ if not
- $Z_i = k$ if i is randomized at stage 2 to $B_k, k = 1, 2$
 (defined only if $R_i = 1$)
- $P(Z_i = 1 | R_i = 1) = \pi =$ probability of second stage randomization to B_1 (after first stage randomization to A_1) if response

Consider $k = 1$: Want to estimate $\mu_{11} = E(T_{11i}), k = 1, 2$, based on observed data $(R_i, R_iZ_i, T_i), i = 1, \ldots, n$

- The estimators discussed (based on observed data) may be shown to be consistent for μ_{11}, e.g., $n^{-1} \sum_{i=1}^{n} Q_iT_i$
7. Demonstration using potential outcomes

Want to show: \[E(Q_i T_i) = E(T_{11i}), \quad Q_i = 1 - R_i + R_i I(Z_i = 1) \pi^{-1} \]

Assume: For subjects randomized to \(A_1 \)

- If \(R_i = 0 \), \(T_{11i} \) and \(T_{12i} \) are the same; thus

\[T_i = (1 - R_i)T_{11i} + R_i I(Z_i = 1)T_{11i} + R_i I(Z_i = 2)T_{12i} \]

Using: \(R_i(1 - R_i) = 0, \; I(Z_i = 1)I(Z_i = 2) = 0 \), etc.

\[E(Q_i T_i) = E[T_{11i}\{(1 - R_i) + R_i I(Z_i = 1)\pi^{-1}\}] \]
\[= E[T_{11i} E\{(1 - R_i) + R_i I(Z_i = 1)\pi^{-1}|R_i, T_{11i}\}] \]

so want to show

\[E\{(1 - R_i) + R_i I(Z_i = 1)\pi^{-1}|R_i, T_{11i}\} = 1 \]
7. Demonstration using potential outcomes

\[
E\{(1 - R_i) + R_i I(Z_i = 1)\pi^{-1}|R_i, T_{11i}\}
\]
\[
= E\{(1 - R_i) + R_i I(Z_i = 1)\pi^{-1}|R_i = 0, T_{11i}\} P(R_i = 0|T_{11i})
\]
\[
+ E\{(1 - R_i) + R_i I(Z_i = 1)\pi^{-1}|R_i = 1, T_{11i}\} P(R_i = 1|T_{11i})
\]
\[
= P(R_i = 0|T_{11i}) + E\{ I(Z_i = 1)|R_1 = 1, T_{11i}\} \pi^{-1} P(R_i = 1|T_{11i})
\]
\[
= P(R_i = 0|T_{11i}) + P(R_i = 1|T_{11i}) = 1
\]

Because: By randomization,

\[
E\{ I(Z_i = 1)|R_1 = 1, T_{11i}\} = P(Z = 1|R = 1, T_{11i}) = P(Z = 1|R = 1) = \pi
\]

⇒ randomization ensures \(i\)’s assignment to \(B_1\) does not depend on \(i\)’s prognosis

For \(k = 2\): Same argument, now \(Q_i = 1 - R_i + R_i I(Z_i = 2)(1 - \pi)^{-1}\)
References

These slides available at:

http://www.stat.ncsu.edu/~davidian