Effect of acyclovir on herpetic ocular recurrence using a structural nested model (and some context)

Stephen R. Cole and Haitao Chu
Department of Epidemiology
Johns Hopkins Bloomberg School of Public Health

scole@jhsph.edu

http://statepi.jhsph.edu/~scole/index.htm
CORRECTING FOR NON-COMPLIANCE IN RANDOMIZED TRIALS
USING RANK PRESERVING STRUCTURAL FAILURE TIME MODELS

James M. Robins and Anastasios A. Tsiatis

Department of Biostatistics
Harvard School of Public Health
665 Huntington Avenue, Boston, Massachusetts 02115 USA

Key Words and Phrases: causal inference; counterfactual models; survival analysis; censored data.

ABSTRACT

We propose correcting for non-compliance in randomized trials by estimating the parameters of a class of semi-parametric failure time models, the rank preserving structural failure time models, using a class of rank estimators. These models are the structural or strong version of the "accelerated failure time model with time-dependent covariates" of Cox and Oakes (1984). In this paper we develop a large sample theory for these estimators, derive the optimal estimator within this class, and briefly consider the construction of "partially adaptive" estimators whose efficiency may approach that of the optimal estimator. We show that in the absence of censoring the optimal estimator attains the semiparametric efficiency bound for the model.
ACYCLOVIR FOR THE PREVENTION OF RECURRENT HERPES SIMPLEX VIRUS EYE DISEASE

THE HERPETIC EYE DISEASE STUDY GROUP*

ABSTRACT

Background Long-term treatment with antiviral agents has been shown to prevent recurrences of genital and orofacial herpes simplex virus (HSV) disease, but it is uncertain whether prophylactic treatment can prevent recurrences of ocular HSV disease.

Methods We randomly assigned 703 immunocompetent patients who had had ocular HSV disease within the preceding year to receive 400 mg of acyclovir or placebo orally twice daily. The study outcomes were the rates of development of ocular or nonocular HSV disease during a 12-month treatment period and a 6-month observation period.

Results The cumulative probability of a recurrence in the anterior uvea (iritis) represents a more serious form of the disease that can cause permanent visual loss. No treatment has been demonstrated to prevent recurrences of ocular HSV disease, and neither antiviral drugs nor other treatments are routinely prescribed after the resolution of acute HSV eye infections.

Acyclovir is a potent and specific antiviral agent that is effective in the treatment of and prophylaxis against nonocular HSV infection. Controlled trials have established that oral acyclovir significantly reduces the rate of recurrent genital and orofacial HSV infections in otherwise healthy persons. Some studies in animals have shown that systemic acyclovir
Herpetic Eye Disease Study (HEDS)

- HEDS Study Group *NEJM* 1998; 339: 300
- 703 adults with ocular HSV inactive in prior month
- Randomized between 1992.67 and 1997.0
- 365 days of 400 mg oral acyclovir or placebo
- Study visits at 1, 3, 6, 9, 12 months, and as needed
- Patients and physicians well masked
- Endpoint was first recurrence of ocular HSV
Characteristics at randomization

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Acyclovir</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>357</td>
<td>346</td>
</tr>
<tr>
<td>Male</td>
<td>55 %</td>
<td>52 %</td>
</tr>
<tr>
<td>Caucasian</td>
<td>80 %</td>
<td>78 %</td>
</tr>
<tr>
<td>Years of age</td>
<td>50 ± 18</td>
<td>48 ± 18</td>
</tr>
<tr>
<td>Severe</td>
<td>39 %</td>
<td>38 %</td>
</tr>
</tbody>
</table>
Number of days followed and treated

![Graph showing treatment days versus follow-up days with circles representing Acyclovir and squares representing Placebo.](image-url)
Methods

- Nested structural AFT model
 \[U(i) = \int_0^{T(i)} \exp[\alpha_0 X(i,t)] dt \]
 - \(U(i) \) is event time for subject \(i \) under no exposure
 - \(T(i) \) is observed event time
 - \(X(i,t) \) is 1 if exposed to acyclovir on day \(t \), else 0
 - \(\exp(-\alpha_0) \) is the time expansion factor

- G-estimation
 - line-search across \(\{\alpha\} \) for \(\alpha^* = \alpha_0 \)
 - \(\alpha^* \) is the member of \(\{\alpha\} \) yielding
 \(f[U(i, \alpha^*)|R(i)] = f[U(i,\alpha^*)] \), where \(R(i) \) indicates randomized group
Alpha \(\{\alpha\}\) versus test statistic
Results

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intent-to-treat</td>
<td>0.55</td>
<td>0.41, 0.75</td>
</tr>
<tr>
<td>Structural model</td>
<td>0.41</td>
<td>0.22, 0.76</td>
</tr>
<tr>
<td>As-treated</td>
<td>0.62</td>
<td>0.45, 0.84</td>
</tr>
</tbody>
</table>
Survival curves

Effectiveness is dashed
Efficacy is dotted
Assumptions, Limitations

- Assume potential outcomes of one participant are independent of potential outcomes of others
- Assume compliance information is correct
- Assume no heterogeneity in effect
- Weibull distribution assumed to obtain hazard ratio
- Dropout model assumed correct
Context: We do not account for noncompliance in biomedical RCTs

NEJM volumes 352 and 353 in 2005

203 research articles
92 randomized clinical trials
\(\geq 74\) intention-to-treat analyses
0 analyses accounting for noncompliance
Context: When we do, it will only make a difference roughly half the time
Context: When we do, it will only make a difference roughly half the time
Context: Some of the times it makes no difference are particularly insidious
Context: Some of the times it makes no difference are particularly insidious
Effect of acyclovir on herpetic ocular recurrence using a structural nested model (and some context)

Stephen R. Cole and Haitao Chu
Department of Epidemiology
Johns Hopkins Bloomberg School of Public Health

scole@jhsph.edu

http://statepi.jhsph.edu/~scole/index.htm

Thank you for your time