Health Information Exchanges and Big Data: Challenges and Opportunities

Hadi Kharrazi, MHI, MD, PhD

Johns Hopkins University

hkharrazi@jhsph.edu
The presentation in a nutshell

- Introduction
- Big Data and Healthcare
- HIE History, Architecture and Services
- HIE Examples (Indiana HIE, CRISP)
- HIE Big Data Exploration (translating CPGs into population health data)
- HIE and Population Health IT Framework
- JHU Center for Population Health IT (CPHIT)
Introduction

- **Hadi Kharrazi**, MHI, MD, PhD
 - Assistant Professor, Johns Hopkins School of Public Health
 Department of Health Policy and Management
 - Joint Appointment, Johns Hopkins School of Medicine
 Division of Health Sciences Informatics
 - Assistant Director
 Johns Hopkins Center for Population Health IT (CPHIT)
 - **E:** kharrazi@jhu.edu
 - **L:** https://www.linkedin.com/in/kharrazi/
 - **W:** https://jhsph.edu/cphi
 - Research interests: Population DSS, HIE & ACO Analytics
Big Data and Healthcare

Statistics:
- Data size: 2012 = 500 petabytes → 2020 = 25,000 petabytes
- Cost: 2009 = 17.6% GDP ($2.9t) → 2025 = 25.0% GDP
- Big Data Saving: ~$300b/yr

Definition:
- Big Data is a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications.

History in Healthcare
- Last time: We pushed the data boundary in the Human Genome Project (1990)
- This time: Massive roll out of EHRs (Meaningful-Use) and Integration of various source of data (genomic, mobile, patient-generated, exchanges)
Big Data and Healthcare (cont.)

- Big Data Specs – data driven 4Vs:
 - Volume \rightarrow quantity (size)
 - Variety \rightarrow type (structure, standardized, ontology)
 - Veracity \rightarrow quality (meaning, completeness, accuracy)
 - Velocity \rightarrow time (real-time, timeliness)
Big Data and Healthcare (cont.)

Biomedical informatics methods, techniques, and theories

- Bioinformatics
- Imaging Informatics
- Clinical Informatics
- Consumer Health Informatics

Population HIT

Public Health Informatics

Basic Research

Biomedical informatics as a basic science

Molecular Research

Health Research

Applied Research
Big Data and Healthcare (cont.)

- Big Data Specs – clinical driven 5Ms:
 - Measure → size, type, quality (QMs, digitization, ...meaningful use)
 - Mapping → integration, interoperability (information exchanges, EDWs)
 - Methods → analytics (exploration, visualization, predictive, ...replacing RCTs)
 - Meanings → knowledge (EBM, CPG, ...meaningful use)
 - Matching → outcomes (triple aims, ACA)
Big Data and Healthcare (cont.)

- Johns Hopkins

Epic

- Measure -
- Mapping -
- Methods ??
- Meaning ??
- Matching ??
HIE History
HIE History (cont.) > ONC

ONC relationship with DHHS
HIE History (cont.) > Health Information Organization (HIO)

- **HIE (verb):** The electronic movement of health-related information among disparate organizations according to nationally recognized standards in an authorized and secure manner.

- **HIO (noun):** An organization that oversees and governs the exchange activities of health-related information among independent stakeholders and disparate organizations according to nationally recognized standards in an authorized and secure manner.

- An HIO can be described by many acronyms, including:
 - State Level Health Information Exchange (**SLHIE**)
 - Regional Health Information Exchange (**RHIO**)
 - Regional Health Information Network (**RHIN**)
 - Health Information Exchange Networks (**HIE[N]**)
 - Others: Integrated Delivery Systems (**IDNs**); Physician practices HIEs; Payer-led HIEs; and, Disease-specific HIEs.
HIE Architecture > Centralized

Centralized HIE

Data Repository

© Hadi Kharrazi @ JHSPH-HPM
HIE Architecture (cont.) > Federated

Federated Inconsistent HIE
HIE Architecture (cont.) > Federated

Federated Consistent HIE
HIE Architecture (cont.) > Hybrid

Hybrid HIE
HIE Architecture (cont.) > Switch

EHRs → Data Standardization Machine → PHRs

Claims → Data Standardization Machine → Registries

PACS → Data Standardization Machine → LABs

Switch HIE

Copyright Regenstrief Institute
HIE Architecture (cont.) > Patient Centric

Patient Centric HIE (e.g., PHR controlled)
HIE Architecture (cont.)

Health Information Organizations / Regional HIOs

Copyright Regenstrief Institute
Connecting RHIOs / NwHIN
HIE Architecture (cont.) > NwHIN

Nationwide Health Information Network (NwHIN)
HIE Services > Core Services

- **Presentation Services**: login, patient look-up, request patient records, view data

- **Business Application Services**: e-Prescribing, EMR, lab, radiology, eligibility checking, problem list/visit history

- **Data Management Services**: data persistence/access, value/code sets, key manage.

- **Data Storage Services**: message logs, XML Schemas, Provider/User Directory

- **Integration Services**: message translation/transport, HL7 mapping, EMR adapter

- **System Management Services**: system config, audit/logging, exception handling
HIE Services > Data Services by Constituency

- **Hospitals:**
 - Clinical messaging
 - Medication reconciliation
 - Shared EHR
 - Eligibility checking

- **Physicians:**
 - Result reporting
 - Secure document sharing
 - Shared EHR
 - Clinical decision support
 - Eligibility checking

- **Laboratory:**
 - Clinical messaging
 - Orders

- **Public Health:**
 - Needs assessment
 - Biosurveillance
 - Reportable conditions
 - Results delivery

- **Consumers:**
 - Personal Health Records

- **Researchers:**
 - De-identified longitudinal clinical data

- **Payers:**
 - Quality measure
 - Claims adjustment
 - Secure document transfer
HIE Services > Emerging Services

- Next Generation Analytics
 - Data warehouse, data analytics and business intelligence
 - Quality reporting support
 - Performance management
 - Fraud and abuse identification and prevention
 - Care gap identification
 - Care and disease management
 - Public health monitoring and analysis
 - Population monitoring and predictive profiling
The Indiana HIE (IHIE) includes (as of mid-2011):

- Federated Consistent Databases
- 22 hospital systems → ~70 hospitals
- 5 large medical groups and clinics & 5 payors
- Several free-standing labs and imaging centers
- State and local public health agencies
- 10.75 million unique patients
- 20 million registration events
- 3 billion coded results
- 38 million dictated reports
- 9 million radiology reports
- 12 million drug orders
- 577,000 EKG tracings
- 120 million radiology images
HIE Examples (cont.) > CRISP (Chesapeake Regional Info. Sys. for our Patients)

- **Focus Areas:**
 - Query Portal Growth
 - Direct Secure Messaging
 - Encounter Notification System (ENS)
 - Encounter Reporting System (ERS)
 - Health Benefits Exchange integration

<table>
<thead>
<tr>
<th>Progress Metric</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizations Live</td>
<td></td>
</tr>
<tr>
<td>Hospitals (Total 48)</td>
<td>48</td>
</tr>
<tr>
<td>Hospital Clinical Data Feeds (Total 143 - Lab, Radiology, Clinical Docs)</td>
<td>86</td>
</tr>
<tr>
<td>National Labs</td>
<td>2</td>
</tr>
<tr>
<td>Radiology Centers (Non-Hospital)</td>
<td>5</td>
</tr>
<tr>
<td>Identities and Queries</td>
<td></td>
</tr>
<tr>
<td>Master Patient Index (MPI) Identities</td>
<td>~4M</td>
</tr>
<tr>
<td>Opt-Outs</td>
<td>~1500</td>
</tr>
<tr>
<td>Queries (Past 30 Days)</td>
<td>~3500</td>
</tr>
<tr>
<td>Data Feeds Available</td>
<td></td>
</tr>
<tr>
<td>Lab Results</td>
<td>~16M</td>
</tr>
<tr>
<td>Radiology Reports</td>
<td>~5M</td>
</tr>
<tr>
<td>Clinical Documents</td>
<td>~2M</td>
</tr>
</tbody>
</table>
Patient has diabetes and has not had an eye exam in two years. Based on guideline xxx you may want to consider asking for an eye consultation.

```php
$results = mysql_fetch();
$patient_id = $results['patient_id'];
mysql_query ('SELECT * FROM lab WHERE patient_id = $patient_id' and lab_term = 'HBA1c');
$results = mysql_fetch();
$lab_result = $results['lab_term'];
IF ($lab_result > 9){
    ECHO “Patient has a high HBA1c level”; 
}
```
HIE Big Data Exploration (cont.)

Clinical Practice Guidelines

Computerized CPG (CARE, Arden syntax)

Manual Programming for each CPG

One patient at the time

Relational DB 1

CDSS SQL 1

NQF QM eMeasures

Automated for all CPGs

All patient at the time

Relational DB 2

CDSS SQL 2

Relational DB n

CDSS SQL...
HIE Big Data Exploration (cont.)

- **CPG**
- **NQF**
- **CPG Consortium**
- **CARE Arden**
- **XML**
- **Lexical Integration**
- **Syntactic Mapping**
- **Semantic Integration**
- **XSLT trans.**

Generating Renewable CDSS

1. CDSS SQL 1
2. CDSS SQL 2
3. CDSS SQL... (n)

Relational DB 1
Relational DB 2
Relational DB... (n)

Pragmatic Integration
HIE Big Data Exploration (cont.)
HIE Big Data Exploration (cont.)

<table>
<thead>
<tr>
<th>Rules</th>
<th>Population</th>
<th>One patient*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4_1.sql</td>
<td>59</td>
<td>0.18</td>
</tr>
<tr>
<td>CHOLESTEROL_1.sql</td>
<td>180</td>
<td>0.11</td>
</tr>
<tr>
<td>CHOLESTEROL_2.sql</td>
<td>1</td>
<td>0.12</td>
</tr>
<tr>
<td>DIABETES_1.sql</td>
<td>541</td>
<td>0.56</td>
</tr>
<tr>
<td>DIABETES_2.sql</td>
<td>1561</td>
<td>0.47</td>
</tr>
<tr>
<td>DIABETES_3.sql</td>
<td>182</td>
<td>0.40</td>
</tr>
<tr>
<td>DIABETES_4.sql</td>
<td>121</td>
<td>0.40</td>
</tr>
<tr>
<td>DIABETES_5.sql</td>
<td>1620</td>
<td>1.51</td>
</tr>
<tr>
<td>TCL_2.sql</td>
<td>67</td>
<td>0.12</td>
</tr>
<tr>
<td>TCL_3.sql</td>
<td>69</td>
<td>0.18</td>
</tr>
<tr>
<td>TCL_4.sql</td>
<td>61</td>
<td>0.17</td>
</tr>
<tr>
<td>TETANUS_SHOT_1.sql</td>
<td>1</td>
<td>0.07</td>
</tr>
<tr>
<td>WHOLE_1.sql</td>
<td>127</td>
<td>0.16</td>
</tr>
<tr>
<td>WHOLE_2.sql</td>
<td>129</td>
<td>0.13</td>
</tr>
<tr>
<td>Average (sec)</td>
<td>1249</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Runtime per second

* each row shows average of 20 individual runs
HIE Big Data Exploration (cont.)

Applying all applicable CARE rules for Institute-1

Some rules are never hit for institute 1 (not shown in this diagram)
HIE Big Data Exploration (cont.)

Institute versus Rules (Raw Numbers)
(zero rules / zero institutes are removed)
HIE Big Data Exploration (cont.)

Institute 1: Percentage of Hit / Miss Rules

Missed applicable CARE rules for institute-1
(CDSS-generated QM fingerprint)

Manual process of deciphering the rules (hit-means-miss OR hit-means-hit-only)
The lower the better (less missed)
HIE Big Data Exploration (cont.)

Institute 2: Inverse Percentage of Hit / Miss Rules

Missed applicable CARE rules for institute-2
(CDSS-generated QM fingerprint)

Manual process of deciphering the rules (hit-means-miss OR hit-means-hit-only)

The lower the better (less missed)
HIE Big Data Exploration (cont.)

Missed rate by institute

The effect size of the missed rules depends on the population size.
HIE and Population HIT > Population Health Informatics

- Population Health Info.
 - Population Health Analytics
 - Population Health Data-warehouse
 - Personal Health Records
 - Insurance Data
 - Rx Data
 - Admin data repositories

CI to PubHI
PubHI to CI
CI to PubHI
PubHI to CI

Clinical Informatics
EHRs
1...n

HIE

Public Health Informatics
A
B
C
Population-based HIE

EHRs → MPI → PHRs

Claims → MPI → Registries

PACS → MPI → LABs

Population-based CDSS across databases
The Johns Hopkins Center for Population Health Information Technology
(CPHIT, or “see-fit”)

- The mission of this innovative, multi-disciplinary R&D center is to improve the health and well-being of populations by advancing the state-of-the-art of Health IT across public and private health organizations and systems.

- CPHIT focuses on the application of electronic health records (EHRs), mobile health (m-health) and other e-health and HIT tools targeted at communities and populations.

- Director: Dr. J. Weiner

- www.jhsph.edu/cphit
CPHIT (cont.)

CPHIT Organizational Linkages

External PH/IDS Orgs.

JH Health System

JHU Academic Departments and other R&D centers

JH Healthcare Solutions, LLC

Industry Foundations Government

Business Partners

Copyright Dr. J. Weiner
CPHIT (cont.)

- **CPHIT’s R&D Priorities**

 - Development and testing of measures created from EHRs and other HIT systems to quantify quality, outcome and need within target populations and communities.

 - Use and advancement of computing methodologies – including natural language processing (NLP) and pattern recognition tools – to improve the application of non-structured EHR data for population-based interventions.

 - Initiation of effective approaches for linking provider-centric EHR systems with consumer-centric internet and mobile-based e-health applications.

 - Development of EHR-based tools and decision support applications to identify and help manage high risk populations for preventive and/or chronic care and to coordinate care within IDS/ACO.

 - Strategic approaches for creating an interoperable community of EHR networks and integrating them with the current functions of public health agencies (e.g., surveillance and vital records).

 - Creation of legal/ethical and policy frameworks to support the development of secondary use of EHRs for public health programs and research.
CPHIT (cont.) > Research Pipeline

- Developing and Testing "e-ACGs": Using EHR / HIT Data to Enhance Johns Hopkins ACGs' Ability to Measure Risk and Health Status

- Real-time, Cross-Provider High Readmission Risk Detection and Notification System

- Evaluate the economic impact of the Shared Patient Virtual Health Record (SPVHR) in Inpatient Settings

- Prescription Drug Monitoring Program (PDMP) Evaluation

- Developing and evaluating an Inter-Provider Health Screening and Quality Measure System (IPHSQMS)

- Identifying high risk pregnancies by linking claims and clinical data using natural language processing tools

www.jhsph.edu/cphit
Thank you

Q & A

www.jhsph.edu/cphit