Health Disparities in Diabetes and Obesity: Biological, Clinical, and Nonclinical Factors—An Endocrine Society Scientific Statement

Sherita Hill Golden, MD, MHS
Associate Professor of Medicine and Epidemiology

Division of Endocrinology and Metabolism
Welch Center for Prevention, Epidemiology, and Clinical Research
Johns Hopkins Center to Eliminate Cardiovascular Health Disparities
Johns Hopkins University School of Medicine

September 10, 2012
Background

• Health disparities in disease burden, comorbidities and outcomes exist worldwide

• IOM report: “Unequal Treatment (2002)”
 – Examine health system, provider, and patient factors
 – Ethnic minorities → less access to preventive care, treatment and surgery → delayed diagnosis, advanced disease
 – Persistence of race/ethnic disparities in health and healthcare (type 2 diabetes and complications and thyroid cancer and bone fracture outcomes)

• IOM report: Exploring the Biological Contributors of Human Health: Does Sex Matter? (2001)
 – Highlighted effect of sex on health care disparities
 – Consideration of sex as biological variable, allowing for sex-stratified analyses, reducing sex-based discrimination in health
 – Coronary heart disease in diabetes, thyroid disease, osteoporosis → disproportionately affect women
Objectives

• To provide a scholarly review of the published literature on biological, clinical, and nonclinical contributors to disparities in endocrine disorders
 – Race/ethnic
 – Sex

• To identify current gaps in knowledge as a focus of future research needs
Scientific Statement Writing Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Area of Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sherita Hill Golden, MD, MHS (JHU)</td>
<td>Clinical endocrinology, diabetes and CVD epidemiology, diabetes disparities</td>
</tr>
<tr>
<td>Anne Sumner, MD (NIDDK)</td>
<td>Clinical endocrinology, disparities in metabolic syndrome (body fat distribution, dyslipidemia)</td>
</tr>
<tr>
<td>Arleen Brown, MD, PhD (UCLA)</td>
<td>Diabetes disparities, health services research</td>
</tr>
<tr>
<td>Tiffany Gary-Webb, PhD, MHS (Columbia University)</td>
<td>Social epidemiology, diabetes and obesity disparities</td>
</tr>
<tr>
<td>Marshall H. Chin, MD, MPH (University of Chicago)</td>
<td>Interventions to reduce disparities, health services research</td>
</tr>
<tr>
<td>Catherine Kim, MD, MPH (University of Michigan)</td>
<td>Sex disparities in diabetes complications, gestational diabetes, women’s health</td>
</tr>
<tr>
<td>Jane A. Cauley, DrPH (University of Pittsburg)</td>
<td>Disparities in metabolic bone disease</td>
</tr>
<tr>
<td>Julie Ann Sosa, MD, MA (Yale University)</td>
<td>Disparities in thyroid disorders, endocrine surgery</td>
</tr>
<tr>
<td>Blair Anton, MLIS, MS (JHU)</td>
<td>Comprehensive literature search skills</td>
</tr>
</tbody>
</table>
Search Strategy

- Global prevalence data from World Health Organization

- U.S. population-based studies identified through PubMed: MeSH and key word terms
 - Racial, ethnic, and sex differences (specific populations)
 - Specific endocrine disorder or condition

- Identified systematic reviews, meta-analyses, large cohort and population-based studies, original studies

Golden et al., JCEM, 2012
Definitions of Race/Ethnicity

<table>
<thead>
<tr>
<th>Race/economic groups</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Hispanic Black (NHB)</td>
<td>Individuals of African descent born and/or residing in the US</td>
</tr>
<tr>
<td>Non-Hispanic White (NHW)</td>
<td>Nonminority individuals</td>
</tr>
<tr>
<td>Hispanic-American</td>
<td>Mexican, South American, Cuban, or Puerto Rican descent born and/or residing in US</td>
</tr>
<tr>
<td>Asian-American</td>
<td>South Asian (e.g. Indian), East Asian (e.g. Japanese, Chinese), Southeast Asian (e.g. Cambodian, Vietnamese, Laotian, Thai), Pacific Island (Filipino)</td>
</tr>
<tr>
<td>Native American</td>
<td>American Indians and Alaska Natives</td>
</tr>
</tbody>
</table>

Golden et al., *JCEM*, 2012
Race/Ethnic Disparities in Diabetes Mellitus
Worldwide Diabetes Prevalence: 346 million individuals
WHO 2010 Statistics

- Countries with highest diabetes prevalence
 - Nauru, United Arab Emirates, Saudi Arabia

- Countries with lowest diabetes prevalence
 - Mongolia, Rwanda, Iceland

- Death from diabetes higher in low- and middle-income countries
Diabetes Prevalence by Race/Ethnicity

- 7.6% Cuban, Central, South American
- 13.6% Mexican American
- 13.8% Puerto Rican American

Centers for Disease Control, National Diabetes Fact Sheet, 2011
Heterogeneity in Diabetes Prevalence in Asian-Americans

*Native Hawaiian/Other Pacific Islander

Biological Factors

• Obesity and body fat distribution
 – 500 million adults ≥20 years were obese in 2010
 – Highest worldwide prevalence—Nauru, Tonga, Cook Island, Micronesia
 – U.S. ranked 5th highest in male obesity (44.2%) and 12th highest in female obesity (48.3%)
Race/Ethnic Differences in Overweight and Obesity

<table>
<thead>
<tr>
<th>Race/Ethnic Group</th>
<th>Percentage BMI≥30 kg/m² (NHANES 2009-2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHWs</td>
<td>34.3%</td>
</tr>
<tr>
<td>NHBs</td>
<td>49.5%</td>
</tr>
<tr>
<td>Mexican-Americans</td>
<td>40.0%</td>
</tr>
</tbody>
</table>

- Grade 2 (BMI≥35 kg/m²) and 3 (BMI≥40 kg/m²) highest in NHBs and Mexican Americans
- NHB and Mexican American women—greater rise in obesity prevalence over last 12 yrs than NHB or Mexican American men or NHW men or women
- Native Americans and Alaska Natives—33.2% obese versus 24.8% of NHWs in 2007 NHIS

Flegal et al., JAMA, 2012; Pleis and Lucas, 2007
Prevalence of overweight and obesity in Asian-Americans

<table>
<thead>
<tr>
<th>Race/ethnic group</th>
<th>Age-adjusted overweight prevalence (%)</th>
<th>Age-adjusted obesity prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese</td>
<td>21.8</td>
<td>4.2</td>
</tr>
<tr>
<td>Filipino</td>
<td>33.0</td>
<td>14.1</td>
</tr>
<tr>
<td>Asian Indian</td>
<td>34.4</td>
<td>6.0</td>
</tr>
<tr>
<td>Japanese</td>
<td>25.9</td>
<td>8.7</td>
</tr>
<tr>
<td>Vietnamese</td>
<td>19.1</td>
<td>5.3</td>
</tr>
<tr>
<td>Korean</td>
<td>27.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Other Asian and Native Hawaiian or other Pacific Islander</td>
<td>29.2</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Narayan et al., *J Am Coll Cardiol*, 2010
Asian individuals develop diabetes at lower body mass index

Race/ethnic differences in body fat distribution

- Asian Americans have more visceral fat at similar BMI and waist circumference compared to NHWs
 - Japanese Americans
 - Filipinos
Biological Factors

- Obesity and body fat distribution

- Glucose metabolism and insulin resistance (compared to NHWs)
 - Greater insulin resistance in minority populations (independent of adiposity)
 - Asian Americans have lower beta cell insulin secretion
 - Glucose metabolic features may differ in Hispanic Americans depending on country of origin
Biological Factors

- Obesity and body fat distribution

- Glucose metabolism and insulin resistance (compared to NHWs)

- Genetics
 - Susceptibility loci associated with type 2 diabetes risk in European populations are also associated with increased risk in minority populations
 - GWAS in non-European populations—novel diabetes-associated SNPs (South and East Asians, NHBs)
 - Overall, genetic architecture of type 2 diabetes similar across race/ethnicity
Non-Biological Factors

- **Acculturation:** “process by which immigrants adopt the attitudes, values, customs, beliefs, and behaviors of a new culture”
 - Hispanic immigrants
 - Asian immigrants

- **Socioeconomic Status**—lower income, education, and occupational status associated with increased diabetes risk

- **Health Behaviors**
 - Physical activity—Less in minorities compared to NHWs
 - Smoking—Native Americans and Alaska Natives have higher rates compared to NHWs
Interface of Clinical/Biological and Environmental Factors: Epigenetics and Early Life Events
Intrauterine Environment

- Fetal undernutrition and stress, maternal stress, maternal obesity → modification of offspring developmental biology

- Low birth weight → insulin resistance, diabetes, abdominal adiposity, CVD risk, elevated cortisol reactivity (esp. NHBs)
 - Nutritional deprivation
 - Placental vascular compromise

- Epigenetic changes in cellular gene expression: fetal adaptation to adverse intrauterine environment

Summary: Take Home Pearls

- Insulin resistance is a key contributor to type 2 diabetes risk in minority populations
 - Prevention target
 - Basic science studies—determine if race/ethnic differences in insulin signaling

- Reduced beta cell function and greater visceral adiposity in Asian-Americans → higher diabetes risk at lower BMI

- Heterogeneity in diabetes risk within Hispanic and Asian sub-populations

Summary: Take Home Pearls

- Genetic architecture of type 2 diabetes risk similar in European and ethnic minority populations
 - Future GWAS in ethnic minorities (esp. Native Americans, Hispanic-Americans and NHBs)
 - Use of ancestral markers to account for admixture

- Acculturation and health behaviors contribute to diabetes and obesity in ethnic minority populations

- Low birth weight, fetal undernutrition, and maternal-fetal stress → early targets for diabetes preventive intervention

Race/Ethnic Disparities in Diabetic Complications
Microvascular Complications

• Retinopathy
 – Severe retinopathy and visual impairment more common in ethnic minorities

• Nephropathy
 – End-stage renal disease (ESRD) disproportionately affects minority populations (esp. NHBs and Native Americans)
 – ESRD risk higher in Asian-Americans over age 45 yrs
 – NHBs have lower mortality on dialysis compared to NHWs
Macrovascular Complications

• Cardiovascular Disease
 – Lower risk of CVD in minority populations, except Native Americans, compared to NHWs
 – NHBs have higher CVD mortality rate
 – Hispanic-Americans with hyperglycemia have higher post-stroke mortality than NHWs

• Peripheral arterial disease/amputations
 – Higher risk in NHBs and Native Americans than NHWs
 – Lower risk in Asian-Americans than NHWs
 – Studies in Hispanic-Americans mixed
Biological Factors: Race/Ethnic Differences in Glycemic Control

- Ethnic minorities with diabetes have worse glycemic control than NHWs.

- Controversies: HbA1c in minority populations
 - Non-glycemic factors may contribute to higher levels in ethnic minorities
 - Caution in using HbA1c as only measure of diabetes diagnosis and management
 - HbA1c similarly related to micro- and macrovascular complications in NHBs and NHWs.
Race/Ethnic Differences in CVD Risk Factors

- Blood pressure \rightarrow nephropathy, peripheral arterial disease
 - Higher hypertension prevalence in NHBs and Mexican American women than NHWs

- Lipids \rightarrow CVD
 - Minorities generally have more favorable lipid profile (except lower HDL in NHBs)
Genetics and Epigenetics

- Few GWAS analyses on complications in ethnic minorities

- Low birth weight—may be associated with increased nephropathy risk through epigenetics
 - Associated with alterations in anatomical structure and function of kidneys and pancreas in animal models
 - Associated with increased odds of end-stage renal disease in humans
Non-Biological Factors: Health Behaviors

- Self-monitoring of blood glucose
 - Rates lower in NHBs, Hispanic-Americans, and Asian-Americans than NHWs (no differences in Native Americans)

- Physical activity—lower in ethnic minorities than to NHWs
Non-Biological Factors: Access to and Quality of Care

Poor access to care

- Factors associated with inadequate access to diabetes specialist care
 - Lower educational attainment
 - Lack of health insurance greater in minorities with diabetes
- Ethnic minorities have worse diabetes-related outcomes even in countries with universal health insurance coverage

Poor quality of care

- Uninsured with diabetes receive fewer recommended processes of care, have worse glycemic control, and more diabetic eye disease
- Less aggressive prescribing practices in minority individuals living in countries with universal health insurance coverage
Summary: Take Home Pearls

- Ethnic minorities disproportionately affected by microvascular complications and mortality

- Notable paradoxes
 - CVD mortality higher in NHBs despite lower incidence of disease than in NHWs
 - Survival on dialysis higher in NHBs despite higher rates of end-stage renal disease than in NHWs

- Future basic, translational, and clinical research needed to elucidate mechanisms of survival differences

Golden et al, JCEM, 2012
Sex Disparities in Diabetic Complications
Sex Disparities in Diabetic Complications

• Microvascular complications rates similar in men and women

• Disparities in macrovascular complications
 – Diabetes increases risk of CHD and CHD mortality in women more than men
 – Peripheral arterial disease and diabetes-related lower limb amputations higher in men
Biological and Non-Biological Factors

• Biological Factors
 – Differences in glycemic control, lipids
 – Dimorphic sex hormone status \rightarrow endothelial dysfunction and adipokine activity

• Treatment
 – Women with type 2 diabetes less likely to use aspirin
Summary: Take Home Pearls

- Reasons for sex differences remain largely speculative

- Most marked sex differences in diabetic complications are for coronary heart and peripheral arterial disease

- Future basic, translational, and clinical research needed to elucidate differential impact of diabetes on two vascular beds

Conceptual Framework for Endocrine Disparities

BIOLOGIC-ENVIRONMENT INTERACTIONS

Proximate Factors

Biologic/Genetic Pathways
Allostatic load, genetics, genetic ancestry, epigenetics

Biologic/Responses
Stress, hypertension, obesity, ↑ cholesterol, hyperglycemia

Individual Risk Behaviors
Smoking, diet, disease self-management, medication adherence

Individual Demographics and Social Factors
Age, socioeconomic status, education, race/ethnicity, acculturation, social support, language barriers

DISPARATE HEALTH OUTCOMES
Diabetes Mellitus and Diabetes Complications
BIOLOGIC-ENVIRONMENT INTERACTIONS

Proximate Factors

Biologic/Genetic Pathways
Allostatic load, genetics, genetic ancestry, epigenetics

Biologic/Responses
Stress, hypertension, obesity, ↑ cholesterol, hyperglycemia

Intermediate Factors

Individual Risk Behaviors
Smoking, diet, disease self-management, medication adherence

Individual Demographics and Social Factors
Age, socioeconomic status, education, race/ethnicity, acculturation, social support, language barriers

Physical Context
Neighborhood stability, cleanliness, sidewalks, open space, parks, food availability

Social Context
Collective efficacy, social capital, social network, social cohesion, poverty, racial/ethnic integration, social/economic gradient

Healthcare Context
Access to care, quality of care, provider characteristics, patient-provider relationships, health literacy

DISPARATE HEALTH OUTCOMES
Diabetes Mellitus and Diabetes Complications
BIOLOGIC-ENVIRONMENT INTERACTIONS

Proximate Factors

Biologic/Genetic Pathways
- Allostatic load, genetics, genetic ancestry, epigenetics

Biologic/Responses
- Stress, hypertension, obesity, ↑cholesterol, hyperglycemia

Individual Risk Behaviors
- Smoking, diet, disease self-management, medication adherence

Individual Demographics and Social Factors
- Age, socioeconomic status, education, race/ethnicity, acculturation, social support, language barriers

Intermediate Factors

Physical Context
- Neighborhood stability, cleanliness, sidewalks, open space, parks, food availability

Social Context
- Collective efficacy, social capital, social network, social cohesion, poverty, racial/ethnic integration, social/economic gradient

Healthcare Context
- Access to care, quality of care, provider characteristics, patient-provider relationships, health literacy

Distal Factors

Social Conditions and Policies
- Poverty, public policy, prejudice, culture, discrimination

DISPARATE HEALTH OUTCOMES
Diabetes Mellitus and Diabetes Complications
Successful Interventions for Reducing Diabetes Health Disparities

<table>
<thead>
<tr>
<th>Level of intervention</th>
<th>Successful Components</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>Interpersonal connections rather than computer-based</td>
<td>Improved glycemic control and diabetes-related knowledge</td>
</tr>
<tr>
<td></td>
<td>• Face-to-face</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Social networks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Family/peer support groups</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Community health worker Culturally tailored</td>
<td></td>
</tr>
<tr>
<td>Provider</td>
<td>In-person feedback rather than computerized decision-support</td>
<td>Change in provider behavior and improved diabetes outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Successful Interventions for Reducing Diabetes Health Disparities

<table>
<thead>
<tr>
<th>Level of intervention</th>
<th>Successful Components</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsystem/health care organization</td>
<td>Disease management • Identification of diabetes population (registries) • Practice guidelines • Health IT to track and monitor patients • Care management*</td>
<td>Improved diabetes outcomes</td>
</tr>
<tr>
<td>Community/health care system</td>
<td>• Culturally tailored patient education and empowerment • Community coalition building and advocacy • Community health workers • Provider audit and feedback • Quality improvement • Case management*</td>
<td>Improved minority health care Reduced racial and ethnic disparities in care</td>
</tr>
</tbody>
</table>
Six cross-cutting themes of successful disparity interventions (RWJ Foundation)

- Target multiple patient barriers rather than single solution
- Culturally tailor interventions
- Use multidisciplinary teams
- Employ interactive, skills based patient training rather than passive learning approaches
- Use patient navigators
- Involve family and community

Take Home Pearls

- Compared to NHWs, NHBs have worse outcomes and higher mortality from certain disorders despite having a lower or similar incidence
 - Coronary heart disease in diabetes

- Obesity is important contributor to diabetes risk in minority populations
Take Home Pearls

• Implications of obesity definitions in different race/ethnic groups → ethnic specific cut-points for central adiposity should be determined to adequately assess metabolic risk

• Little evidence that genetic differences contribute significantly to race/ethnic disparities in diabetes or its complications

• Many current studies fail to specify Hispanic-American and Asian-American subgroups
Take Home Pearls

- Multi-level interventions have reduced disparities in diabetes care → design similar interventions for other endocrine disorders

- Basic science, population-based, translational, and health services studies needed to explore underlying mechanisms contributing to endocrine health disparities
 - Increase representation of ethnic minorities in both clinical and research sectors of endocrinology and diabetes
Acknowledgements

Jane Cauley Arleen Brown Catherine Kim Blair Anton

Jose Florez, MD; James Meigs MD, MPH; Eric Vohr; Ivy Garner; Claire Twose
Acknowledgements:
The Endocrine Society

Loretta Doan, PhD

Dr. Janet Hall
Dr. Robert Carey
Dr. David Cooper
Acknowledgements: My Journey
Thank You!
sahill@jhmi.edu