PRIME Study:
PCV Review of Impact Evidence

SAGE
10/18/2017

Maria Deloria Knoll, PhD
on behalf of the PRIME Study Team
PCV Review of Impact Evidence (PRIME): Provide up-to-date summary of evidence on: PCV immune response, effectiveness and impact

METHODS:
- Systematic review published 1994-2017
- Clinical trials and observational studies of routine use
- 3-dose schedule (2+1 and 3+0)
- PCV10 and PCV13

OUTCOMES:
PCV effectiveness and impact on:
- Immunogenicity
- Nasopharyngeal carriage
- Invasive disease (IPD)
- Pneumonia
- Mortality

ANALYSES:
- Meta-analyses for immunogenicity
- Descriptive summary for other outcomes due to differences in methods and epidemiologic settings
- Considered:
 - previous PCV7 use,
 - age (<5 years and >5),
 - dosing schedule,
 - time since introduction,
 - catch-up program
PRIME Inclusion/Exclusion Criteria:

Included:
- **Product:** PCV10 or PCV13
- **Dosing Schedule:** 3+0 or 2+1
 - 2+0 and 3+1 included where technically relevant
- **Outcomes:**
 - Vaccine-type immunogenicity (IgG GMC, % Responders),
 - Vaccine-type nasopharyngeal carriage,
 - Vaccine-type invasive pneumococcal disease (IPD)
- **Study types:** Clinical trials, observational studies reporting pre- and post-vaccine introduction incidence rates for disease outcomes or prevalence for carriage

Excluded:
- **Outcomes:** Otitis media, immunogenicity measured by opsonophagocytic activity or avidity
- **Study types:** Post-only disease incidence data; case-series data for disease outcomes (i.e., no denominator)
- **Indirect effects:** Studies with less than 3 years of PCV10/13 use
PRISMA: Inclusion/Exclusion Report

Record Identification
- Records identified through Pubmed database search: Oct 9 2015, 20,852
- Additional records identified: ISPPD 2012 & 2014 abstracts (n=646)
- IVAC Literature Search Oct 9 2015 - May 13 2017 (n=162)
- Duplicates excluded: 8,945
- Records after duplicates removed: 11,907

Screening
- Records Title/Abstract screened: 12,715
- Records excluded: 8,997
- Records full text screened: 3,718
- Records excluded: 3,381

Abstraction
- Records fully abstracted: 337
- Records without sufficient detail to understand PCV impact: 130

Analysis
- Records included in analysis: 207
Data Hierarchy: Available Evidence

- Clinical Trials
- Observational Studies
- RCTs

Within Study Comparisons
Between Study Comparisons
PICO Question 1: Schedule Comparison

<table>
<thead>
<tr>
<th>Intervention</th>
<th>2p+1 vs. 3p+0 schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td></td>
</tr>
<tr>
<td>• Vaccinated children (direct effects)</td>
<td></td>
</tr>
<tr>
<td>• Unvaccinated older children and adults (indirect effects)</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>• Immunogenicity</td>
<td></td>
</tr>
<tr>
<td>• NP carriage</td>
<td></td>
</tr>
<tr>
<td>• IPD</td>
<td></td>
</tr>
</tbody>
</table>
Immunization

1

Immunogenic Response:
Vaccine Type specific antibody (IgG)

Immunogenicity
Schedule Comparison Results: Immunogenicity

Included Study Arms by Dosing Schedule, PCV Product and Region:

<table>
<thead>
<tr>
<th>Head to Head Trials</th>
<th>n=9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **2p Single Arm Trials**
 - PCV10
 - PCV13

- **3p Single Arm Trials**
 - PCV10
 - PCV13

Confounding potential: Uneven distribution by geography

2p = 2 Primary Doses; 3p = 3 Primary Doses
Schedule Comparison Results: Immunogenicity

Head to Head Comparison of Schedules: IgG geometric mean concentration (GMC)
Analysis: meta-analysis of 9 randomized clinical trials

<table>
<thead>
<tr>
<th>Post Primary (i.e. 2 vs 3 doses):</th>
<th>Results</th>
<th>Serotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMC: Similar</td>
<td>3</td>
<td>19F</td>
</tr>
<tr>
<td>GMC: Favors 3p</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7F</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>19A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6A</td>
<td>6B</td>
</tr>
<tr>
<td></td>
<td>23F</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post-Dose 3 (i.e., at age 4m vs. 15m):</th>
<th>Results</th>
<th>Serotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMC: Similar</td>
<td>3</td>
<td>19A</td>
</tr>
<tr>
<td>GMC: Favors 2+1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6A</td>
<td>7F</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>19F</td>
</tr>
<tr>
<td></td>
<td>23F</td>
<td>6B</td>
</tr>
</tbody>
</table>

- GMC reflects amount of antibody, not necessarily protection
- Higher GMC does not necessarily correlate to better protection if there is a threshold for protection
Schedule Comparison Results: Immunogenicity

Head to Head Comparison of Schedule: Percent Response (above correlate of protection)

Post Primary (i.e. 2 vs 3 doses):

<table>
<thead>
<tr>
<th>Results</th>
<th>Serotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMC: Similar</td>
<td>3</td>
</tr>
<tr>
<td>%Response: Similar</td>
<td>19F</td>
</tr>
<tr>
<td>GMC: Favors 3p</td>
<td>1</td>
</tr>
<tr>
<td>%Response: Similar</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7F</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>19A</td>
</tr>
<tr>
<td>GMC: Favors 3p</td>
<td>6A</td>
</tr>
<tr>
<td>%Response: Favors 3p</td>
<td>6B</td>
</tr>
<tr>
<td></td>
<td>23F</td>
</tr>
</tbody>
</table>

Post-Dose 3 (i.e., at age 4m vs. 15m):

<table>
<thead>
<tr>
<th>Results</th>
<th>Serotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMC: Similar</td>
<td>3</td>
</tr>
<tr>
<td>%Response: Similar</td>
<td>19A</td>
</tr>
<tr>
<td>GMC: Favors 2+1</td>
<td>1</td>
</tr>
<tr>
<td>%Response: Similar</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6A</td>
</tr>
<tr>
<td></td>
<td>7F</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>19F</td>
</tr>
<tr>
<td></td>
<td>23F</td>
</tr>
</tbody>
</table>

Results: Similar % Response between schedules for most STs;
-- Favors 3+0 in the primary series for 6A, 6B, 23F
-- Favors 2+1 for 6B
PCV Modes of Action

1. Immunization

Immunogenic Response: Vaccine Type specific antibody (IgG)

2. Nasopharyngeal Carriage

Direct Protection Against Colonization
Schedule Comparison Results: NP Carriage

Included Studies in NPC Analysis by Product and Schedule:

By Region

- **2+1**
 - PCV10: 1 study
 - PCV13: 2 studies

- **3+0**
 - PCV10: 1 study
 - PCV13: 1 study

Potential Confounding: by geography

- North America
- Latin America
- Europe
- Australia/Oceania
- Asia
- Africa

By Previous PCV Use

- **2+1**
 - Prior PCV7 Use: 3 studies
 - No Prior PCV7 Use: 1 study

- **3+0**
 - Prior PCV7 Use: 7 studies
 - No Prior PCV7 Use: 2 studies

Potential Confounding: by prior PCV7 use

By Study Design

- **2+1 Single Arm**
 - Observational: 3 studies
 - RCT: 1 study
 - Potential Confounding: by product
 - PCV10
 - PCV13

- **3+0 Single Arm**
 - Observational: 4 studies
 - RCT: 1 study
 - Potential Confounding: by product
 - PCV10
 - PCV13
Schedule Comparison Results: NP Carriage

Vaccine Type Carriage: 2+1 (Red) vs 3+0 (Blue)

Analysis: Head to head trials, comparison of schedules between trials, and between-study comparisons of observational studies

Results: Head to head trials and single-schedule trials: directionally favoring 2+1 (red)

a) Head to Head RCTs:

<table>
<thead>
<tr>
<th>Vaccine Type</th>
<th>Finland PCV10 at 14.5m and 11.5m</th>
<th>Vietnam PCV10 at 12m</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>(Vesikari 2016)</td>
<td>(Muholland 2017)</td>
</tr>
<tr>
<td>3+0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) H2H & Single-Schedule RCTs:

- *Finland, 2+1, PCV10, 3-5 yrs, (Jokinen 2016)
- Nepal, 3+0, PCV10, 9 mo, (Hamaluba 2015)
- COMPAS, 3+0, PCV10, 12-15 mo, (Borys 2012)
- *Finland, 3+0, PCV10, 11.5 mos, (Vesikari 2016)
- *Finland, 2+1, PCV10, 14.5 mos, (Vesikari 2016)
- *Finland, 3+0, PCV10, 6mos, (Vesikari 2016)
- Vietnam, 3+0, PCV10, 12 mos, (Muholland 2017)
Schedule Comparison Results: NP Carriage

Vaccine Type Carriage: 2+1 (Red) vs 3+0 (Blue)

Results: Between-study comparisons of observation studies suggest similar impact, but potential confounding

But confounding due to:
- Prior PCV7 use
- Current product
- Pneumococcal carriage prevalence

Results: Between-study comparisons suggest similar impact.

Grey triangles represent prior use of PCV7, but no pre-PCV7 carriage data are available so the slope of the line is unknown. The triangle’s left edge extends to the year of PCV7 intro.
PCV Modes of Action

1. Immunization

2. Immunogenic Response: Vaccine Type specific antibody (IgG)

Invasive Disease

Direct Protection Against Disease

Direct Protection Against Colonization

World Health Organization
Schedule Comparison Results: Invasive Disease

Included Studies in IPD Analysis by Product and Schedule:

Inclusion Criteria:
- VT IPD reported as a group or serotype-specific
- RCTs, case-control, and pre-post vaccination incidence
- Meningitis, bacteremic pneumonia

Exclusion Criteria:
- Immunocompromised or special populations
- Number of cases only (i.e., no incidence)

Confounding potential:
Most studies in the context of prior PCV7 use

Number of Study Arms

<table>
<thead>
<tr>
<th></th>
<th>Prior PCV7 Use</th>
<th>No Prior PCV7 Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>3+0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Confounding potential:
Differential distribution by region and product

Number of Studies

<table>
<thead>
<tr>
<th>Region</th>
<th>2+1</th>
<th>3+0</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Latin America</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Europe</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Australia/Oceania</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Asia</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Africa</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Included Studies in IPD Analysis by Prior PCV7 Use:

<table>
<thead>
<tr>
<th>Prior PCV7 Use</th>
<th>Number of Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Prior PCV7 Use</td>
<td>2+1</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

World Health Organization

IVAC
Schedule Comparison Results: Vaccine Type IPD

Vaccine Impact on PCV10/13-Type Disease by Schedule and Previous PCV7 Use:

Results: Both schedules reduce the burden of Vaccine-Type IPD; Similar impact seen between schedules

2+1 Schedule: (n=14)

<table>
<thead>
<tr>
<th>Prior PCV7 Use</th>
<th>Number of Studies:</th>
<th>Range of Point Estimates (% reduction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>n=3</td>
<td>82 to 93%</td>
</tr>
<tr>
<td>Yes</td>
<td>n=11</td>
<td>70 to 100%</td>
</tr>
</tbody>
</table>

3+0 Schedule: (n=4)

<table>
<thead>
<tr>
<th>Prior PCV7 Use</th>
<th>Number of Studies</th>
<th>Range of Point Estimates (% reduction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>n=2</td>
<td>92% to 92%</td>
</tr>
<tr>
<td>Yes</td>
<td>n=2</td>
<td>70 to 82%</td>
</tr>
</tbody>
</table>
Schedule Comparison Results: Invasive Disease

ST1 is a special vaccine type

Vaccine efficacy and impact

- Pre-licensure 3+0 trials in Africa show no impact on ST1 IPD (however, small N)
- Recent outbreaks in PCV-using countries raised concerns whether 3+0 produces long-lasting protection

Epidemiology

- Creates outbreaks
- Dominant IPD serotype in Africa and Asia
- Differentially occurs in older children
Schedule Comparison Results: Serotype 1 IPD

Vaccine Impact on ST 1 Disease by Schedule:

Results: Evidence that both schedules impact burden of ST1 IPD; substantial data paucity on 3+0

2+1 Schedule:

<table>
<thead>
<tr>
<th>2+1:</th>
<th>Range of Point Estimates (% reduction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=7 (all PCV13)</td>
<td>0 to 98%</td>
</tr>
<tr>
<td>• Impact (n=4)</td>
<td>88 to 98%</td>
</tr>
<tr>
<td>• No Impact (n=1)</td>
<td>0% (NS)</td>
</tr>
<tr>
<td>• Inconclusive (n=2)*</td>
<td>--</td>
</tr>
<tr>
<td>n=1 Case Control</td>
<td>84%</td>
</tr>
</tbody>
</table>

*Few ST1 IPD isolates pre-PCV13

NS = not statistically significant

3+0 Schedule:

<table>
<thead>
<tr>
<th>3+0:</th>
<th>Range of Point Estimates (% reduction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=4*</td>
<td>90%</td>
</tr>
<tr>
<td>• Impact (n=2)**</td>
<td>90%</td>
</tr>
<tr>
<td>• Inconclusive (n=2)***</td>
<td>--</td>
</tr>
</tbody>
</table>

*Includes two unpublished studies that were available to the SAGE working group after the PRIME analysis

**One unpublished study: no impact reported

**Few ST1 IPD isolates pre-PCV10/13
Schedule Comparison: Overall Conclusions

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Vaccine Type (VT) Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunogenicity</td>
<td>Antibody concentration (GMC):</td>
</tr>
<tr>
<td></td>
<td>- 3 primary doses more immunogenic than 2 primary doses</td>
</tr>
<tr>
<td></td>
<td>- 2+1 more immunogenic after 3(^{rd}) dose</td>
</tr>
<tr>
<td></td>
<td>% Responders: Schedules showed similar impact except for 6A, 6B and 23F</td>
</tr>
<tr>
<td>NP Carriage</td>
<td>Schedules showed similar impact</td>
</tr>
<tr>
<td>IPD</td>
<td>VT: Both schedules showed similar impact; Limited 3+0 data</td>
</tr>
<tr>
<td></td>
<td>ST1: Clear evidence of 2+1 impact; evidence of 3+0 impact but limited data</td>
</tr>
<tr>
<td>Overall</td>
<td>Both schedules are effective in reducing VT Carriage and Disease</td>
</tr>
</tbody>
</table>
PICO Question 2: Product Comparison

<table>
<thead>
<tr>
<th>Intervention</th>
<th>PCV10 vs PCV13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vaccinated children (direct effects)</td>
</tr>
<tr>
<td></td>
<td>• Unvaccinated older children and adults (indirect effects)</td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Immunogenicity</td>
</tr>
<tr>
<td></td>
<td>• NP carriage</td>
</tr>
<tr>
<td></td>
<td>• IPD</td>
</tr>
</tbody>
</table>
PICO II Question: Product Comparison

Both products were licensed and pre-qualified on the basis of immunogenicity and non-inferiority to PCV7, which was licensed on the basis of demonstrated efficacy against invasive pneumococcal disease.

PCV10 – Synflorix:
- Carrier Proteins: protein D from non-typeable Haemophilus influenzae (PD) (NTHi), Tetanus Toxoid (TT), Diphtheria Toxoid (DT)

PCV13 – Prevenar-13:
- Carrier Protein: CRM197 a non-toxic mutant of diphtheria toxin (CRM)

<table>
<thead>
<tr>
<th>Product</th>
<th>Serotype & Carrier Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PCV10</td>
<td>1μg PD</td>
</tr>
<tr>
<td>PCV13</td>
<td>2.2 μg CRM</td>
</tr>
</tbody>
</table>
Product Comparison Results: Immunogenicity

Analysis: Between-study meta-analysis comparison at the post-dose 3 time point (all $n\geq14$)
- 7 representative serotypes of the 10 in common were analyzed

Results: For serotypes in common: GMC: more STs favored PCV13
%Responder: PCV10 and PCV13 were comparable
Product Comparison Results: Immunogenicity

Analysis: Between-study meta-analysis comparisons at the post-dose 3 time point (all n≥14 except ST3 PCV10 n=1))

Results: **For serotypes 3, 6A and 19A** in PCV13 but not in PCV10:

- PCV13 is more immunogenic than PCV10; limited evidence to evaluate ST3 in PCV10
- PCV10 is immunogenic against STs 6A and 19A, but only with 2+1 schedule
 - Fewer than 60% of PCV10-vaccinated infants reached correlate of protection with 3p+0
Product Comparison Results: NP Carriage VT

Vaccine Type Carriage: PCV10 (Orange) vs PCV13 (Blue)

Analysis: Head to head trials, between-trial comparisons of single product trials, and between-study comparison of observational studies of routine use

Results: Both products are effective against their respective serotypes; Similar impact seen between products
Product Comparison Results: NP Carriage VT

Vaccine Type Carriage: PCV10 (Orange) vs PCV13 (Blue)

Observational studies of NP Carriage before and after PCV introduction

Results:
• Similar declines for both PCV10 and PCV13 when adjusted for starting value
• Considerable confounding:
 • schedule (all PCV10 are 3+0)
 • previous use of PCV7 (~all PCV13 previously used PCV7)

Grey triangles represent prior use of PCV7, but no pre-PCV7 carriage data are available so the slope of the line is unknown. The triangle’s left edge ends to the year of PCV7 intro.

- Gambia 3+0 PCV13 <1yrs (Roca, 2015)
- Australia 3+0 PCV13 <3y Aboriginal (Wigger, 2014)
- Burkina Faso 3+0 PCV13 <5y (Moisi, 2016)
- Malawi 3+0 CU PCV13 3-5y (Swarthout, 2016)
- Cambodia 3+0 PCV13 0-11m (SuyKuong, 2016)
- France 2+1 PCV13 <2yrs (Dunais, 2015)
- Norway 2+1 PCV13 <2 yrs (Steens, 2016)
- Israel 2+1 CU PCV13 <5 yrs (Danino; Ben Shimol, 2016)
- UK 2+1 PCV13 <5 <4yrs (Devine; Jones, 2016)
- So.Af. 2+1 PCV13 <2yrs (Nzenze, 2016)
- UK 2+1 CU PCV13 <5yrs (Van Hoek)
- So.Af. 2+1 CU PCV13 <2yrs (Nzenze, 2015)
- Mozambique 3+0 PCV10 <2y (Sigaque, 2016)
- Kenya 3+0 CU PCV10 <2y (Hammitt, 2016)
- Kenya 3+0 PCV10 <5y (Kim, 2016)
- Kenya 3+0 CU PCV10 <5y (Kim, 2016)
- Fiji 3+0 PCV10 <2y (Dunne, 2016)
- Sweden 2+1 PCV13 <6 (Galanis, 2016)

*p<0.05
Product Comparison Results: NP Carriage ST3

Serotype 3 Carriage: PCV10 (Orange) vs PCV13 (Blue)

Results:
- Limited trial data available
- No evidence PCV10 impacted ST3 carriage

Head to Head RCTs

![Graph showing head to head RCTs]

- Vietnam 2+1 at 12m (Temple 2016)

H2H And Single Product RCTs

![Graph showing H2H and single product RCTs]

- Vietnam, 2+1, PCV13, 12mo (Temple 2016)
- Nepal, 3+0, PCV10, 9mo (Hamaluba 2015)
- Vietnam, 2+1, PCV10, 12 mo (Temple 2016, Smith-Vaughan 2016)
Product Comparison Results: NP Carriage ST3

Serotype 3 Carriage: PCV10 (Orange) vs PCV13 (Blue)

Observational studies of NP Carriage before and after PCV introduction

Results:
- No impact seen with either product
- Equal number of studies showed increases and decreases in carriage

Gambia 3+0 PCV13 6-11 mo (Rocca, 2015)
- South Africa, Soweto 2+1 PCV13 <2yrs (Nzenze, 2015) CU
- *Norway 2+1 PCV13 <5 yr (Vestreheim, 2008; 2010)
- France 2+1 PCV13 <2yrs (Varon, 2015)
- *UK 2+1 PCV13 <4 <5 (Devine, 2016; Jones, 2016)
- Sweden 2+1 PCV13 <6 (Galanis, 2016)
- Netherlands 3+0 PCV10 11mo (Wyllie, 2016)
- Netherlands 3+0 PCV10 <2y (Vissers, 2016; Bosch, 2015;2014)
- Kenya, Kilifi 3+0 PCV10 <2 yr (Hammitt, 2014;2016) CU
- Kenya, Asembo 3+0 PCV10 <5 yr (Kim, 2016) CU
- Kenya, Kibera 3+0 PCV10 <5 yr (Kim, 2016)
- Malawi 3+0 PCV13 <5yr (Swarthout, 2016) CU
- Cambodia 3+0 PCV13 <5yr (Su & Kuo, 2016)
Product Comparison Results: NP Carriage ST6A

Serotype 6A Carriage: PCV10 (Orange) vs PCV13 (Blue)

Results:
- Reductions seen for both products
- Some evidence favoring PCV13
 - Head to head trial favored PCV13 although non-significant; PCV10 trial (Finland) showed no reduction but had very low baseline carriage (<2.5%)
 - Declines in ST 6A more pronounced with PCV13 in routine use studies

Head to Head RCTs

Vietnam 2+1 at 12m (Mulholland 2017)

H2H And Single Product RCTs

- *Vietnam, 3+0, PCV10, 12mo (Mulholland 2017)
- Vietnam, 2+1, PCV10, 12mo (Mulholland 2017)
- Vietnam, 2+1, PCV13, 12mo (Mulholland 2017)
- Finland, 3+0, PCV10, 11.5mo (Vesikari 2016)
- Finland, 3+0, PCV10, 6mo (Vesikari 2016)
- Finland, 2+1, PCV10, 14.5mo (Vesikari 2016)
Product Comparison Results: NP Carriage ST6A

Serotype 6A Carriage: PCV10 (Orange) vs PCV13 (Blue)

Results:
- Declines in ST 6A more pronounced with PCV13

Observational studies of NP Carriage before and after PCV introduction:
- Sweden 2+1 PCV13 <6 (Galanis, 2016)
- *Gambia 3+0 PCV13 6-11 mo (Rocca, 2015)
- *South Africa, Soweto 2+1 PCV13 <2yrs (Nzenze, 2015)
- *Norway 2+1 PCV13 <5 yr (Vestrheim 2008, 2010)
- *France 2+1 PCV13 <2yrs (Varon 2015)
- UK 2+1 PCV13 <5 <4 (Devine 2016, Jones, 2016)
- *Netherlands 3+0 PCV10 <2y (Vissers 2016, Bosch 2015;2014)
- Kenya, Kilifi 3+0
 PCV10 <2 yr (Hammitt, 2014;2016) CU
 Kenya, Asembo 3+0
 PCV10 <5 yr (Kim, 2016) CU
- Kenya, Kibera 3+0
 PCV10 <5 yr (Kim, 2016)
- Fiji 3+0
 PCV10 <2yr (Dunne; Russell, 2016)
- Malawi 3+0
 PCV13 <5yr (Swarthout, 2016) CU
- *Cambodia 3+0
 PCV13 <5yr (SuyKuong, 2016)
Product Comparison Results: NP Carriage ST6C

Serotype 6C Carriage: PCV10 (Orange) vs PCV13 (Blue)

Analysis: Between study comparisons of observational studies only
- No trial data available

Results:
- PCV13 shows reduction while PCV10 showed increase

Analysis:

Results:

- PCV13 shows reduction while PCV10 showed increase

* *p<.05*

Graph:
- NP Carriage before and after PCV introduction

Legend:
- Sweden 2+1 PCV13 <6 (Galalis, 2016)
- *UK 2+1 PCV13 <5 <4 (Devine, 2016; Jones, 2016)
- *Netherlands 2+1 PCV10 <2y (Vissers, 2016; Bosch 2015; 2014)
- Fiji 3+0 PCV10 <2yr (Dunne; Russell 2016)
- France 2+1 PCV13 6-24 mo (Varon, 2015)
- *Norway 2+1 PCV13 <7 (Steens, 2016)

* *p<.05*
Product Comparison Results: NP Carriage ST19A

Serotype 19A Carriage: PCV10 (Orange) vs PCV13 (Blue)

Results:
- Evidence favors PCV13
 - Head to head trial showed greater impact with PCV13 though non-significant
 - Some increases seen in PCV10 single arm trials
 - Routine use of PCV13 showed reduction in carriage while PCV10 showed some increases

Head to Head RCTs

H2H And Single Product RCTs

*p<.05
Product Comparison Results: NP Carriage ST19A

Serotype 19A Carriage: PCV10 (Orange) vs PCV13 (Blue)

Results:
- PCV13 showed consistent reductions while PCV10 showed some increases

*Reduction attributed to natural variation, not PCV10 impact

*p<.05
Product Comparison Results: NP Carriage

In Summary: products had similar results except ST19A and perhaps ST6A (favored PCV13)

<table>
<thead>
<tr>
<th>Vaccine Serotypes in Common</th>
<th>Serotypes in PCV13 and not in PCV10</th>
<th>ST6C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ST3</td>
<td>ST6A</td>
</tr>
<tr>
<td>Similar impact with both products</td>
<td>No Impact with either product</td>
<td>Impact with both products; Declines more pronounced with PCV13</td>
</tr>
</tbody>
</table>
Product Comparison Results: Vaccine Type IPD

Vaccine Impact on PCV10/13-Type Disease by Product and Previous PCV7 Use:

Results:
- Both products similarly reduced (directly and indirectly) IPD caused by the serotypes within each vaccine

<table>
<thead>
<tr>
<th>Vaccine Type</th>
<th>No Prior PCV7 Use</th>
<th>Number of Studies</th>
<th>Range of Point Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCV10:</td>
<td></td>
<td>N=4</td>
<td>87 to 93%</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>N=2</td>
<td>77 to 96%</td>
</tr>
<tr>
<td>PCV13:</td>
<td></td>
<td>N=1</td>
<td>82%</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>N=9</td>
<td>65 to 100%</td>
</tr>
</tbody>
</table>
Product Comparison Results: ST3 IPD

Vaccine Impact on ST3 Disease by Product and Previous PCV7 Use:

Results:
- PCV10 showed no impact on ST3 (not included in the vaccine), but limited data
- PCV13 had inconclusive results

PCV10:

<table>
<thead>
<tr>
<th>Number of Studies:</th>
<th>Range of Point Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=3</td>
<td>-354 to 29%</td>
</tr>
<tr>
<td>• No or low Impact (n=1)</td>
<td>29% (NS)</td>
</tr>
<tr>
<td>• Increase (n=2)*</td>
<td>-194 to -354%</td>
</tr>
</tbody>
</table>

N=1 Case Control**

8% (NS)

*Both Finland
**Ineligible 4-dose study that was reviewed by SAGE WG (Brazil, Domingues 2014)

PCV13:

<table>
<thead>
<tr>
<th>Number of Studies</th>
<th>Range of Point Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=7</td>
<td>-35 to 85%</td>
</tr>
<tr>
<td>• Impact (n=2)</td>
<td>68 to 85%</td>
</tr>
<tr>
<td>• No or low Impact (n=5)</td>
<td>-35 to 41% (NS)</td>
</tr>
</tbody>
</table>

N=2 Case Control*

0 to 26% (NS)

*Includes n=1 ineligible 4-dose study that was reviewed by SAGE WG (Germany, Weinnberger 2016)
Product Comparison Results: ST6A IPD

Vaccine Impact on ST6A Disease by Product:

Results:
- Data for both products limited, but supportive of direct effect
- PCV13 studies were in context of prior PCV7 use with low burden of ST6A remaining; reductions seen in both vaccinated and unvaccinated cohorts

PCV10:

<table>
<thead>
<tr>
<th>Number of Studies</th>
<th>Range of Point Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=2</td>
<td>56 to 89%</td>
</tr>
<tr>
<td>• Impact (n=1)</td>
<td>89%</td>
</tr>
<tr>
<td>• Non-Significant Impact (n=1)</td>
<td>56% (NS)</td>
</tr>
<tr>
<td>N=2 Case Control*</td>
<td>15 to 62% (NS)</td>
</tr>
</tbody>
</table>

*Impact of ≥1 dose

PCV13:

<table>
<thead>
<tr>
<th>Number of Studies</th>
<th>Range of Point Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=6</td>
<td>36(NS) to 100%</td>
</tr>
<tr>
<td>• Impact (n=2)</td>
<td>100%</td>
</tr>
<tr>
<td>• Inconclusive (n=4)*</td>
<td>--</td>
</tr>
<tr>
<td>N=1 Case Control**</td>
<td>98%</td>
</tr>
</tbody>
</table>

*Few ST6A IPD isolates remaining post PCV7
**Impact of ≥2 doses
Product Comparison Results: ST6C IPD

Vaccine Impact on ST6C Disease by Product:

Results:
- PCV10: no data available
- PCV13: non-significant impact in vaccinated cohorts
 - Indirect Effects: Impact seen in >65y cohort (n=1)

<table>
<thead>
<tr>
<th>PCV10:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Studies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range of Point Estimates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Available Evidence</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PCV13:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range of Point Estimates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Significant Impact (n=3)</td>
<td>36 to 63% (NS)</td>
<td></td>
</tr>
<tr>
<td>3+1 schedule (n=1)*</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

*Ineligible 4-dose study that was reviewed by SAGE WG; 69% (95%CI 55 – 78) among unvaccinated cohorts (Pilishvili et al. IDWeek 2017)
Product Comparison Results: ST19A IPD

Vaccine Impact on ST19A-Type Disease by Product:

Results:
- PCV10: only effectiveness (i.e., case-control) studies indicate some protective direct effects
 - Indirect effects studies suggest no change or increase in 19A disease
- PCV13: all studies showed protective effects (both direct and indirect)

<table>
<thead>
<tr>
<th>PCV10: Number of Studies</th>
<th>Range of Point Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=2</td>
<td>-54% to no change</td>
</tr>
<tr>
<td>• No or low impact (n=2)</td>
<td>-54% to no change</td>
</tr>
<tr>
<td>N=5 Case Control*</td>
<td>29 to 82%</td>
</tr>
</tbody>
</table>

* n=1 ≥2 doses, n=4 ≥1 dose; Includes indirect cohort studies

<table>
<thead>
<tr>
<th>PCV13: Number of Studies</th>
<th>Range of Point Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=8</td>
<td>68 to 100%</td>
</tr>
<tr>
<td>• Impact (n=8)</td>
<td>68 to 100%</td>
</tr>
<tr>
<td>N=6 Case Control*</td>
<td>67 to 94%</td>
</tr>
</tbody>
</table>

* n=3 ≥2 doses, n=3 ≥1 dose; includes indirect cohort studies
Product Comparison Results: IPD

In Summary: products had similar results except ST19A favors PCV13; unknown for ST6C

<table>
<thead>
<tr>
<th>Vaccine Serotypes in Common</th>
<th>Serotypes in PCV13 and not in PCV10</th>
<th>ST6C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ST3</td>
<td>ST6A</td>
</tr>
<tr>
<td>Similar impact with both products</td>
<td>Impact not demonstrated for either product</td>
<td>Impact with both products; data limited</td>
</tr>
<tr>
<td>Outcome</td>
<td>Vaccine Serotypes in Common</td>
<td>Serotypes in PCV13 and not in PCV10</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ST3</td>
</tr>
<tr>
<td>Immunogenicity</td>
<td>Impact with both products</td>
<td>Favors PCV13</td>
</tr>
<tr>
<td>NPC</td>
<td>Impact with both products</td>
<td>No Impact with either product</td>
</tr>
<tr>
<td>IPD</td>
<td>Similar impact with both products</td>
<td>Impact not demonstrated for either product</td>
</tr>
<tr>
<td>Overall</td>
<td>Impact with both products</td>
<td>Impact not demonstrated for either product</td>
</tr>
</tbody>
</table>
Acknowledgements

Key collaborators
• Katherine O’Brien
• Tamara Pilisvilli
• Jennifer Moïsi
• Jennifer Loo Farrar
• Meena Ramakrishnan
• David Goldblatt
• Monica De Cola
• Oliva Cohen
• Divya Hosangadi
• Thomas Cherian
• Cynthia Whitney
• Lucia Helena de Oliveira