Development and Implementation of a Risk Assessment Tool for prevention of Surgical Site Infections (SSIs) after Joint Replacement Surgery

Rajan V. Nair

Faculty Advisor: Lilly Engineer, DrPH, MD, MBA
Site Preceptor: Susan Redmond, MBA (Director of Rehabilitation, Neurosurgery, and Orthopedic Service Lines; Salem Health)
INTRODUCTION AND DISCLOSURES

• Rajan ("Raj") V. Nair, MD FACS
 • General Surgeon; Salem, OR (1999 – present)
 • Founding Medical Director and Surgeon, Salem Health Bariatric Surgery Center (2006 – present)
 • iMPH candidate, May 2019
 • CQPSOR Certificate candidate, May 2019
 • PHI Certificate candidate, May 2019
• I have nothing to disclose
GOALS FOR PRESENTATION

• Implications of Surgical Site Infections (SSIs) in Joint Replacement Surgeries

• Conceptual framework to justify Negative Pressure Wound Therapy as an intervention to prevent SSIs

• Inherent tension between the costs of unrestricted use of an intervention vs the accruable benefits for an institution

• Process of developing an intervention to address SSIs

• Describe the ongoing implementation of workflow changes
Hospital acquired Conditions and Financial Implications

• February 2006: Deficit Reduction Act (DRA) of 2005: identified conditions that were:
 • high cost + high volume
 • present as secondary case to a DRG
 • were felt to be reasonably preventable

• As of October 2008, hospitals no longer reimbursed for the costs of these events (aka “hospital acquired conditions” or “HACs”)

• CMS: in order to fulfill quality measurement reporting requirements, data needed to be submitted quarterly to the National Healthcare Safety Network (NHSN)
Surgical Site Infections (SSIs)—General

• 2006 – 2008: SSI rate of 1.9%

• 2008 → 2014: 17% decrease in SSI rate for 10 select procedures

• Mortality rate: 3%

• Most costly HAI
 • SSI estimated annual cost: $3.3 billion
 • Approximately 1 million additional inpatient-days annually
Surgical Site Infections (SSIs)—Orthopedic Surgery

• Incidence (in joint replacements): overall = 0.7%
 • For hips: 0.3%
 • For knees: 1.1%

• Infected prosthetic joints usually require operative removal and subsequent revisional arthroplasty → high monetary cost to society
 • $320 M in 2001 → $566M in 2009
 • Projected to be $1.62B in 2020!

• Risk factors for postop complications (including SSIs):
 • Presence of DM
 • Smoking
 • BMI over 40
 • ASA score over 2
 • Postop atrial fibrillation
 • Age > 80

Aggarwal 2013
Pulido 2008
Belmont 2014
Salem Health (Hospital)

- One of 62 Acute care hospitals in Oregon
- Founded in 1896; not-for-profit
- Salem Health System: 2 hospitals (one critical access; one Level 2 Trauma Center—454 acute care beds)
- Busiest ED in Oregon (including OHSU in Portland): 109,131 visits in 2017
- Staff: 4,700 employees, 820 active medical staff
February 2012: first in Oregon to earn the Joint Commission’s Gold Seal of Approval for certification in total hip and knee replacements

- 7+ surgeons

- Average annual volumes:
 - 667 hips
 - 766 knees

- Preop patient and caregiver teaching

- Dedicated ward and specialty nurses

- Standardized clinical care pathways
SSIs in Orthopedic Surgery at Salem Health

Efforts 2011-2016: Hip
Conceptual Framework #1:
Pathophysiology of SSIs in Joint Replacement Surgeries

Surgical trauma to the tissue

Creation of SQ “dead space”

Formation of wound fluid collection (seroma)

Persistent wound drainage
(if greater than 5 days, then 12.7-fold increased risk of PJI)

Peri-prosthetic wound infection
Negative Pressure Wound Therapy (NPWT)

“Negative pressure wound therapy (NPWT), also called vacuum-assisted wound closure, refers to wound dressing systems that continuously or intermittently apply subatmospheric pressure to the surface of a wound.”

-UptoDate

“Negative-pressure wound therapy is a therapeutic technique using a vacuum dressing to promote healing in acute or chronic wounds...”

-Wikipedia
Negative Pressure Wound Therapy (NPWT)

1. Macrodeformation:
2. Microdeformation:
3. Fluid removal:

Pachowsky 2012:
- PRCT THAs; standard dressing vs NPWT (Prevena)
- Ultrasound quantification of seroma volume @POD #10:
 - 90% of pts with std dressing had seromas vs 44% of pts with Prevena
 - $5.08 \pm 5.11 \text{ ml} \ vs \ 1.97 \pm 3.21 \text{ ml Prevena}$ ($p = 0.021$)
4. Stabilization of the environment
Negative Pressure Wound Therapy (NPWT) Success in Orthopedic Surgeries

Hester 2015: hip and knee revisions
- Standard dressing vs NPWT (Pico)
- Decreased wound complications (NSS)

Cooper 2016: hip and knee revisions
- Standard dressing (Aquacel) \([n=108]\) vs NPWT (Prevena) \([n=30]\); **selection by surgeon discretion**
- Overall wound complications: 6.7% (Prevena) vs 26.9% (Aquacel) \([p = 0.024]\)
- Total SSIs: 3.3% (Prevena) vs 18.5% (Aquacel) \([p=0.045]\)
Conceptual Framework #2: Structured use of NPWT to prevent SSIs in Joint Replacement Surgery

- Surgical trauma to the tissue
- Creation of SQ dead space
- Formation of wound seroma
- Persistent wound drainage (if greater than 5 days, then 12.7-fold increased risk of PJI)
- Peri-prosthetic wound infection
Salem Health Experience with Prevena NPWT

2016

<table>
<thead>
<tr>
<th>Prevena Use</th>
<th>Infected</th>
<th>Not infected</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0</td>
<td>13</td>
<td>0/13 = 0%</td>
</tr>
<tr>
<td>No</td>
<td>22</td>
<td>1438</td>
<td>22/1460 = 1.5%</td>
</tr>
</tbody>
</table>

2017

<table>
<thead>
<tr>
<th>Prevena Use</th>
<th>Infected</th>
<th>Not infected</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0</td>
<td>61</td>
<td>0/61 = 0%</td>
</tr>
<tr>
<td>No</td>
<td>18</td>
<td>1384</td>
<td>18/1402 = 1.2%</td>
</tr>
</tbody>
</table>

Prevena Use over time in Orthopedics

- **2016**: 0 Infected, 13 Not infected, 0/13 = 0%
- **2017**: 18 Infected, 1384 Not infected, 18/1402 = 1.2%
- **2018**: $$$
The Fundamental Tension: Cost vs Benefit

Financial Cost of the Intervention
(known cost of ~ $466/device)

Clinical (safety) benefit of the Intervention
(potentially fewer SSIs)

Economic Benefit of the Intervention
(potentially lower costs for treating SSIs, readmissions, etc.)
2016-2017 Joint Replacement Surgeries:
- 40 infections
- Infection-related readmission cost of $479,166 (roughly $500,000) over 2 years

IDEAL SITUATION:
- Breakpoint of $500,000 would allow us to place 1,000 devices in 2 years (or about 500 devices annually)

 \[\frac{$500,000}{466 \text{ per device}} = 1,073 \text{ devices over 2 years} \]

REALITY SITUATION:
- Goal: save 50% of costs
- Then place about 250 devices annually in appropriately targeted patients
Risk factors for complications in joint replacements: What does the literature say about odds ratios?

<table>
<thead>
<tr>
<th>For any postop complication</th>
<th>BMI > 40 OR = 1.47<sup>(2)</sup></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For major systemic complication</td>
<td></td>
<td>Age > 80 OR = 2.63<sup>(2)</sup></td>
</tr>
<tr>
<td>For Mortality</td>
<td></td>
<td>Diabetes OR = 2.99<sup>(2)</sup></td>
</tr>
<tr>
<td>For Minor local complication</td>
<td>ASA > 2 OR = 1.88<sup>(2)</sup></td>
<td>BMI > 40 OR = 2.01<sup>(2)</sup></td>
</tr>
<tr>
<td>For Infection</td>
<td>ASA > 2 OR = 1.95<sup>(1)</sup></td>
<td>BMI > 40 OR = 3.23<sup>(1)</sup></td>
</tr>
</tbody>
</table>

(1) Pulido 2008 (2) Belmont 2014
Risk factors for infections in joint replacements: What does the *OUR experience (2016 – 18)* say using unadjusted *odds ratios*?

| Odds Ratios for Infection | ASA > 2 OR = 3.06 | BMI > 35 OR = 2.44 | Diabetes (A1C between 5.7 and 7.5) OR = 1.35 | Acute hip fracture OR = 1.49 | Anticoagulation OR = 1.61 | Revision OR = 5.61 | Uncontrolled DM OR = 5.25 | Active smoker OR = 2.66 | Age > 80 OR = 2.20 |
Risk factors for *infections* in joint replacements:

What does the *OUR experience (2016 – 18)* say about *prevalence*?

<table>
<thead>
<tr>
<th>Prevalence of the Risk Factor in our Patients</th>
<th>ASA > 2</th>
<th>BMI > 35</th>
<th>Diabetes (A1C between 5.7 and 7.5)</th>
<th>Acute hip fracture</th>
<th>Anticoagulation</th>
<th>Revision</th>
<th>Uncontrolled DM</th>
<th>Active smoker</th>
<th>Age > 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA > 2</td>
<td>49.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI > 35</td>
<td>20.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes (A1C between 5.7 and 7.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute hip fracture</td>
<td>11.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticoagulation</td>
<td>6.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revision</td>
<td>6.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncontrolled DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active smoker</td>
<td>1.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age > 80</td>
<td>16.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Risk factors for infections in joint replacements:

How do we reconcile risk and prevalence?

<table>
<thead>
<tr>
<th>Odds Ratios for Infection</th>
<th>Prevalence of the Risk Factor in our Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA > 2</td>
<td>ASA > 2</td>
</tr>
<tr>
<td>OR = 3.06</td>
<td>49.5%</td>
</tr>
<tr>
<td>BMI > 35</td>
<td>BMI > 35</td>
</tr>
<tr>
<td>OR = 2.44</td>
<td>20.8%</td>
</tr>
<tr>
<td>Diabetes (A1C between 5.7 and 7.5)</td>
<td>Diabetes (A1C between 5.7 and 7.5)</td>
</tr>
<tr>
<td>OR = 1.35</td>
<td>22.0%</td>
</tr>
<tr>
<td>Acute hip fracture</td>
<td>Acute hip fracture</td>
</tr>
<tr>
<td>OR = 1.49</td>
<td>11.0%</td>
</tr>
<tr>
<td>Anticoagulation</td>
<td>Anticoagulation</td>
</tr>
<tr>
<td>OR = 1.61</td>
<td>6.8%</td>
</tr>
<tr>
<td>Revision</td>
<td>Revision</td>
</tr>
<tr>
<td>OR = 5.61</td>
<td>6.0%</td>
</tr>
<tr>
<td>Uncontrolled DM</td>
<td>Uncontrolled DM</td>
</tr>
<tr>
<td>OR = 5.25</td>
<td>1.7%</td>
</tr>
<tr>
<td>Active smoker</td>
<td>Active smoker</td>
</tr>
<tr>
<td>OR = 2.66</td>
<td>1.3%</td>
</tr>
<tr>
<td>Age > 80</td>
<td>Age > 80</td>
</tr>
<tr>
<td>OR = 2.20</td>
<td>16.4%</td>
</tr>
</tbody>
</table>
The Solution:

Balance prevalence and odds ratios for infection by combining risk factors using a real-time, point-of-care Risk Assessment Tool.
Development of the Risk Assessment Tool: Narrowing down the Risk Factors

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Average predicted # of patients per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>All revisions</td>
<td>70</td>
</tr>
<tr>
<td>All uncontrolled diabetics</td>
<td>22</td>
</tr>
<tr>
<td>All active smokers</td>
<td>17</td>
</tr>
<tr>
<td>All acute hip fx pts AND with anticoagulation</td>
<td>11</td>
</tr>
<tr>
<td>All pts with ASA >2 AND Age > 80</td>
<td>121</td>
</tr>
<tr>
<td>“Poor soft tissue envelope/ Pannus overlying incision” (intraop surgeon judgment)</td>
<td>???</td>
</tr>
<tr>
<td>Total ~ 241 patients</td>
<td></td>
</tr>
</tbody>
</table>
Conceptual Framework #3: How the Risk Assessment Tool Should be Deployed

- **Patient evaluated by Orthopedic surgeon at clinic for joint replacement**
- **Clinical documentation of co-morbidities, ordering of tests**
- **Pre-surgery Screening (PSS) Nurses contact patient and input data into discrete fields in the EMR **

Risk factor data compiled in EMR transferred into a Risk Assessment Tool

Risk Assessment Tool is presented to OR nurse prior to completion of case to determine if Prevena NPWT is required
Implementation of the Risk Assessment Tool in the O.R.

Based on the Risk Assessment Tool:
This patient **SHOULD** have a Prevena NWPT device placed because of the following reasons:
- Revisional surgery
- ASA > 2 **AND** Age > 80

The Surgeon has chosen:
- **TO PLACE** a Prevena NPWT device
- **To NOT** place a Prevena NPWT device for the following reasons: ______________
Implementation of the Risk Assessment Tool in the O.R.

Based on the Risk Assessment Tool:
This patient **SHOULD NOT** have a Prevena NWPT device placed because of the following reasons:
- Does **NOT** meet any of the defined risk factor criteria

The Surgeon has chosen:
- **To NOT** place a Prevena device
- **TO PLACE** a Prevena device for the following reasons:
 - Poor soft tissue envelope
 - Pannus overlying the incision
 - Other: ________________
Next Steps

• Work with the IT department to build the EMR-embedded Risk Assessment Tool

• Work with the circulating nurses in the Orthopedic operating room to incorporate the tool into their workflow

 • There is already an “End-of-case Time out” which is performed

• Work with BI to systematically follow outcomes
Final Thoughts

• Facilitators:

 • *Salem Hospital has been a Lean hospital for over a decade*
 • QI projects overseen by the Quality Operations Committee: “...physician-led, patient-centered, and data-driven” projects

 • Persistent institutional focus on HAIs:
 • FY 2018 → “Hips/Knee infections”
 • FY 2019 → “Reduction of HAIs/SSIs”

 • *Immediate administrative oversight*
 • Susan Redmond, MBA: Manager of the Neuromuscular Service Line
 • Denise Hoover, MBA: VP of Surgical Services
Final Thoughts

• **Barriers:**
 - Physician group engagement: Mark Dolan, MD [physician champion]
 - Bandwidth to build the tool in the IT department

• **Lessons learned:**
 - The published literature is ONLY a “guide” to start QI projects; local historical data is the best factor for determining the final intervention
 - Communication with shareholders all along the way is critical (MDs, RNs, IPs, BI, IT, etc.)
GOALS FOR PRESENTATION, again...

• Implications of Surgical Site Infections (SSIs) in Joint Replacement Surgeries

• Conceptual framework to justify Negative Pressure Wound Therapy as an intervention to prevent SSIs

• Inherent tension between the costs of unrestricted use of an intervention vs the accruable benefits for an institution

• Process of developing an intervention to address SSIs

• Demonstrate the implementation of workflow changes
Comments/ Questions?
REFERENCES

