Benefits and challenges of using multiple data sources in systematic reviews

Evan Mayo-Wilson, MPA, Dphil
Tianjing Li, MD, PhD
Center for Clinical Trials and Evidence Synthesis
Department of Epidemiology
Multiple Data Sources (MUDS) Investigators

Steering Committee
Dickersin, Kay (KD)
Fusco, Nicole (NF)
Li, Tianjing (TL)
Mayo-Wilson, Evan (EMW)
Tolbert, Elizabeth (ET)

Protocol development, study implementation
Cowley, Terrie (TC)
Haythornthwaite, Jennifer (JH)
Hong, Hwanhee
Payne, Jennifer (JP)
Singh, Sonal (SS)
Stuart, Elizabeth (ES)
EMW, KD, TL, NF, ET, JE

Data acquisition
Bertizzolo, Lorenzo (LB)
Ehmsen, Jeffery (JE)
Gresham, Gillian (GG)
Heyward, James (JHe)
Lock, Diana (DL)
Rosman, Lori (LR)
Suarez-Cuervo, Catalina (CS)
Twose, Claire (CT)
KD, NF, EMW, TL, SV

Analysis and interpretation of data
Canner, Joseph (JC)
Guo, Nan (NG)
Hong Hwanhee (HH)
Stuart, Elizabeth (ES)
NF, EMW, KD, TL

Systematic Review Data Repository
Jap, Jens (JJ)
Lau, Joseph (JL)
Smith, Bryant (BS)

Ancillary studies
Golozar, Asieh (AG)
Hutfless, Susie (SH)
EMW, KD, TC
Multiple data sources

Public data sources
- Short report (e.g., letter, conference abstract)
- Journal article
- Trial registration
- Results on trial registry
- Information from regulators

Non-public data sources
- Unpublished manuscript
- Individual participant data (IPD)
- Grant proposal
- Study protocol
- Case report form
- Memos and emails

Mayo-Wilson, 2015. DOI: 10.1186/s13643-015-0134-z OA

Doshi, 2013. DOI: 10.1136/bmj.f2865
Multiple Data Sources (MUDS) Study Design

► Two case studies:
 ► Gabapentin for neuropathic pain
 ► Quetiapine for bipolar depression

► Participants & investigators masked

► Placebo-controlled, parallel RCTs

► Comprehensive searches for published and unpublished data
Characteristics of eligible trials

<table>
<thead>
<tr>
<th></th>
<th>Gabapentin</th>
<th>Quetiapine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of trials</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>Dates of reports</td>
<td>1997 to 2013</td>
<td>2003 to 2014</td>
</tr>
<tr>
<td>No. public reports / No. all reports</td>
<td>68/74</td>
<td>46/50</td>
</tr>
<tr>
<td>Individual participant data (No. trials, % of total)</td>
<td>6 (29%)</td>
<td>1 (14%)</td>
</tr>
<tr>
<td>Trial characteristics (No. trials, % of total)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer-funded</td>
<td>14 (67%)</td>
<td>7 (100%)</td>
</tr>
<tr>
<td>≥3 groups</td>
<td>11 (52%)</td>
<td>4 (57%)</td>
</tr>
<tr>
<td>Multi-center</td>
<td>14 (67%)</td>
<td>6 (86%)</td>
</tr>
<tr>
<td>English language</td>
<td>20 (95%)</td>
<td>7 (100%)</td>
</tr>
<tr>
<td>Number of participants randomized (median, range)</td>
<td>150 (26 to 452)</td>
<td>526 (100 to 802)</td>
</tr>
<tr>
<td>Sources of data for each trial (No. trials, % of all trials)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only public</td>
<td>15 (71%)</td>
<td>3 (43%)</td>
</tr>
<tr>
<td>Only non-public</td>
<td>1 (5%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Both public & non-public</td>
<td>5 (24%)</td>
<td>4 (57%)</td>
</tr>
</tbody>
</table>

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.07.014
Characteristics of eligible trials

<table>
<thead>
<tr>
<th>Trials with each report type (No. trials, % of all trials)</th>
<th>Gabapentin</th>
<th>Quetiapine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal article about 1 trial</td>
<td>17 (81%)</td>
<td>6 (86%)</td>
</tr>
<tr>
<td>Journal article about ≥2 trials</td>
<td>7 (33%)</td>
<td>4 (57%)</td>
</tr>
<tr>
<td>Short report: conference abstract</td>
<td>10 (48%)</td>
<td>6 (86%)</td>
</tr>
<tr>
<td>Short report: other</td>
<td>9 (43%)</td>
<td>4 (57%)</td>
</tr>
<tr>
<td>Trial registration</td>
<td>5 (24%)</td>
<td>7 (100%)</td>
</tr>
<tr>
<td>FDA report</td>
<td>2 (10%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>CSR-Synopsis</td>
<td>0 (0%)</td>
<td>2 (29%)</td>
</tr>
<tr>
<td>CSR</td>
<td>6 (29%)</td>
<td>2 (29%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reports of manufacturer funded trials</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer-funded trials (public reports per trial, SD)</td>
<td>7.4 (6.0)</td>
<td>10.3 (8.6)</td>
</tr>
<tr>
<td>Other trials (public reports per trial, SD)</td>
<td>1.4 (0.5)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.07.014
21 trials of gabapentin for neuropathic pain (14 with multiple reports)

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
Poor reporting of research methods

1: Individual trial report ROB items (1 to 17 reports per study)
2: Overall ROB worst case (high, unclear, low)
3: Overall ROB best case (low, unclear, high)

“Best” and “Worst” cases
Individual reports

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
Poor reporting of research methods

3: Overall ROB best case (low, unclear, high)
2: Overall ROB worst case (high, unclear, low)
1: Individual trial report ROB items (1 to 17 reports per study)

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
Results for “primary” outcomes differ between sources

Vedula, 2009. DOI: 10.1056/NEJMsa0906126
Results for “primary” outcomes differ between sources

Vedula, 2009. DOI: 10.1056/NEJMsa0906126
Results for “primary” outcomes differ between sources

Vedula, 2009. DOI: 10.1056/NEJMsa0906126
Outcomes are defined in many ways

Zarin, 2011. DOI: 10.1056/NEJMsa1012065
Outcomes are defined in many ways

Elements of an outcome on ClinicalTrials.gov

- **Level 1 Domain**
 - Anxiety
 - Depression
 - Schizophrenia

- **Level 2 Specific Measurement**
 - Beck Anxiety Inventory
 - Hamilton Anxiety Rating Scale
 - Fear Questionnaire

- **Level 3 Specific Metric**
 - End value
 - Change from baseline
 - Time to event

- **Level 4 Method of Aggregation**
 - Continuous
 - Mean
 - Median
 - Categorical
 - Proportion of participants with decrease ≥50%
 - Proportion of participants with decrease ≥8 points

- **4 outcome domains**
 - Pain
 - 0-10 scale

- **2 specific measures**
 - 8 outcomes
 - McGill Pain Questionnaire
 - Value at timepoint
 - Change from baseline

- **2 specific metrics**
 - 16 outcomes
 - Continuous
 - Categorical

- **2 methods of aggregation**
 - 32 outcomes

- **2 timepoints**
 - 64 outcomes
 - 1 week
 - 8 weeks

Zarin, 2011. DOI: 10.1056/NEJMsa1012065
Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
Multiple analyses lead to *multiple results for the same outcome*

<table>
<thead>
<tr>
<th>Analysis population</th>
<th>Handling missing data</th>
<th>Methods of analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants eligible to be included in the analysis (e.g., people who took one dose, everyone randomized)</td>
<td>Methods to account for missing data, including missing items and missing cases (e.g., multiple imputation, last observation carried forward)</td>
<td>Statistical methods, including analysis model, procedures (e.g., transformations, adjustments), and covariates included in the analysis</td>
</tr>
</tbody>
</table>

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
How much multiplicity is there in clinical trials?

21 trials

6 with non-public sources

4 Outcome domains

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
How much multiplicity is there in clinical trials?

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
How much multiplicity is there in clinical trials?

Multiple totals and subscales

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
How much multiplicity is there in clinical trials?

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
How much multiplicity is there in clinical trials?

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
How much multiplicity is there in clinical trials?

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
How much multiplicity is there in clinical trials?

214 outcomes
1230 results
305 (25%) publicly reported

More hidden...

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
Multiple outcomes and analyses in trials of gabapentin for neuropathic pain

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.05.007
Consequences of multiplicity for systematic reviews

Item 1: Histogram showing the distribution of means (SMDs) from meta-analyses using one continuous effect estimate per study (selected at random)

Item 2: Average of the mean effects (SMDs)

Item 3: 95% confidence interval (CI) corresponding to the mean effects (SMDs) in the histogram, including lower (<) and upper (>) limits.

Item 4: The smallest and largest possible treatment effect from a meta-analysis (with associated 95% CI) calculated by selecting the most extreme results from any report about each included trial.
Consequences of multiplicity for systematic reviews

34 trillion possible meta-analyses of “pain” domain i.e., combinations of the same trials

Item 1: Histogram showing the distribution of means (SMDs) from meta-analyses using one continuous effect estimate per study (selected at random)

Item 2: Average of the mean effects (SMDs)

Item 3: 95% confidence interval (CI) corresponding to the mean effects (SMDs) in the histogram, including lower (<) and upper (>)) limits.

Item 4: The smallest and largest possible treatment effect from a meta-analysis (with associated 95% CI) calculated by selecting the most extreme results from any report about each included trial.

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.07.014
Consequences of multiplicity for systematic reviews

- **Wide distribution of possible effects**
- **Largest possible**
 - Big effect, “significant”
- **Smallest possible**
 - Small effect, “not significant”

Mayo-Wilson, 2017. DOI: 10.1016/j.jclinepi.2017.07.014
Guidance for systematic reviews using multiple sources

Challenges
- Multiple sources increase effort required for systematic reviews
- Non-public sources are time-consuming to identify and obtain
- Investigators may refuse requests to share non-public sources
- It is frequently unclear if multiple reports refer to the same study
- Double-counting trials can lead to incorrect conclusions
- A single source rarely provides complete information about trial design and trial quality ("risk of bias")
- Multiple sources may contain conflicting information about the same trial
- Sources may include the same or different results
- Different sources may include multiple results for the same outcome
- Results may depend on which sources were used for each trial
- Systematic reviews may not be reproducible unless the data and sources used are available to other researchers

Recommendations
- Allocate time to obtain non-public sources and to reconcile information from multiple sources
- Search for non-public sources early in the review process
- Plan for the possibility that requests to trial investigators are refused
- Ask authors to confirm which sources are related to each trial
- Check as many trial characteristics as possible to determine which sources are related to the same trials
- Include a modified PRISMA flowchart to document the selection of data sources
- Use journal articles, trial registries, regulatory reviews, and CSRs to extract information about trial design and quality
- Record the source of information about trial design and quality
- Ask investigators to clarify differences among sources
- Prioritize which source will be used if sources are contradictory (a priori)
- Use journal articles, trial registries, regulatory reviews, CSRs, and IPD to extract results
- Consider excluding results reported only in conference abstracts
- Record the source of each result
- Follow pre-specified methods for choosing among multiple outcome definitions and methods of analysis
- Describe public and non-public sources included, excluded, and awaiting assessment for each trial
- Consider the trustworthiness of the included sources when making recommendations for research and practice
- Share data sources alongside the review (e.g., as online supplements) so that other researchers can check the data and use previously non-public sources in future research

Mayo-Wilson, et al., 2017. DOI: 10.1002/jrsm.1277
Core outcome sets for clinical trials and systematic reviews

http://www.comet-initiative.org/about/overview
Boers, 2014. DOI: 10.1016/j.jclinepi.2013.11.013

“minimum set of outcome measures that must be reported in all RCTs in a given health condition”
Conclusions

- When multiple sources are available, the results of meta-analysis and systematic review may be sensitive to choice of source.
- Conference abstracts were useful only for identifying trials not reported elsewhere.
- Journal articles were broadly consistent with CSRs, but each source sometimes contained information not found in the other source.
- CSRs were most informative about methods.
- CSRs and IPD contained the most results information.
- IPD alone did not include enough information to understand and interpret the data.
- Obtaining and analyzing non-public sources is time consuming and requires expertise.