Data and Information Management in Public Health

Adrienne S. Ettinger, Sc.D., M.P.H.

Environmental Public Health Tracking Methods Course

July 2004
Outline

• Information Management in Public Health
 – Information
 – Infrastructure
 – Informatics
• Database Design
 – Relational Model
 – Data Linkage
• Data Mining and Data Warehousing
Information Management – why?

- **Data needs**
 - Need for good record-keeping and documentation
 - Need for program evaluation
 - Need high quality data to support valid inference

- **Data vs. Information**
 - Public health tradition of generating data
 - Staff time and skills not being spent on analysis
 - Possibility of automating analyses
Perhaps need to clarify the difference between data and information.

J. Herbstman, 2/2/2005
Information Integration

- Lack of existing data standards
- Incompatible systems
- Paper systems
- Categorical stand-alone systems
- Inability to identify (link) individuals being served in multiple systems
- Integration of individual multiple records
Rates of IT Failure: High

• **16.2% were “project successful”**
 (software projects that are completed on-time and on-budget among American companies and governments)

• **52.7% were “project challenged”**
 (they were completed and operational but over-budget, over the time estimate, and offers fewer features and functions than originally scheduled)

• **31.1% were “project impaired”**
 (cancelled)

Source: *Charting the Seas of Information Technology*
The Standish Group 1994
What is the context for this slide? What aspect of IT?

J Herbstman, 2/2/2005
Barriers to IT in Public Health

1. Information
2. Infrastructure
3. Informatics
1. Information

• Surveillance data
 – Only 15-20% of reportable cases reported
 – Delays of days to weeks
 – Not typically in electronic form

• Other relevant data not electronically available
 – Environment, injury, etc.
 – Guidelines
 – Contacts
 – Training materials
• NEDSS = National Electronic Disease Surveillance System
 – Architectural elements
 – Public health conceptual data model
• Knowledge management
 – Preventioneffects.net
 – Encoding of clinical guidelines
 • Disseminate
 • Point-of-care reminders
Maybe an intro bullet point about how NEDSS and other efforts are being made to remedy some of the problems about public health

J Herbstman, 2/2/2005
2. Infrastructure

- **Information technology**
 - Only 48.9% of local health departments have high-speed continuous internet connections (NACCHO, 1999)

- **Workforce**
 - 83% of local health departments indicate that computer training is a key need (NACCHO, 1996)
Desktop Web Access Among Minnesota Public Health Staff
by Job Class, February 2000

Source: Minnesota Health Alert Network (HAN) Project, 2000
Infrastructure Development

- INPHO = Information Network for Public Health Officials (state)
 - Ending in FY2001
- HAN = Health Alert Network (local)
- Frist-Kennedy authorization
 - Infrastructure standards/ assessment
 - Preparedness of public health system
Perhaps a bit more information describing these efforts. . .maybe Frist-Kennedy bullet ok

J Herbstman, 2/2/2005
3. Informatics

- The systematic application of computer & information science and technology to public health practice, research, and learning...
need to integrate this slide and the next slide (12 and 13)

J Herbstman, 2/2/2005
3. Informatics

- The systematic application of computer & information science and technology to public health practice, research, and learning…through integrated information resource management planning; assembling and managing teams with diverse skill sets; managing tasks to complete projects, etc.
Management Skills

- IT projects expensive and high risk
- Interdisciplinary teams required
- New skills needed by public health managers
not sure the point of this slide. . .perhaps can be combined with the next one?

J Herbstman, 2/2/2005
Specific roles - public health managers

- Specify requirements (minimum)
- Facilitate integrated, coordinated IT development (through advice, leadership)
- Manage specific IT projects; assemble and manage development teams
- Translate program vision for technical staff, and vice versa
- Appropriately procure IT products & services
- Resolve inevitable tensions
Informatics in Public Health

- Information Access
 - Databases
 - Knowledge management
- Information Systems
 - Effective management
 - Improved productivity
- Surveillance integrated with EMR
- Feedback to providers
Why gather data?

Determine the magnitude of the problem

- Data is the connection between the problem and how to solve the problem
- Describe what is known about the problem: person, place, time
- Place the problem in context
- Describe what already exists (prevention and intervention programs)
- Compare data to what should exist, identify gaps
- Identify populations or areas at high-risk
- Learn more about your community
Why gather data?

Monitor trends over time
- Provides a source of baseline information
- Progress can be measured against baseline benchmark
Why gather data?

Provides information and a basis for decision-making

• Set priorities
• Develop program based on current information
• Needs
• Resources
• Inform and convince decision-makers
• Need a roadmap to know where you are going and when you have arrived
How to gather data?

- Define the problem or question to be addressed
 - Number of people affected
 - Place that is affected
 - Time period of analysis
- Generate a hypothesis (educated guess) about the reason for the problem
- Identify sources of data to answer the question posed
- Define variables to measure problem or question
- Identify methods to be used to analyze data collected
What data to collect?

• **Types of Data**
 • Primary
 • Secondary

• **Levels of Data / Unit of Observation**
 • Individual-level data on persons or houses
 • Aggregate data at the community-level

• **Sources of Data**
 • Demographic characteristics (ex: vital statistics)
 • Geographic characteristics (ex: census data)
 • Socioeconomic Characteristics (ex: labor, education)
 • Health (ex: health department)
 • Environment (ex: state environmental protection)
Hazard Data Sources

- Ambient Air Concentrations
- Air Emissions and Inspections
- Toxic Release Inventory
- Ground Water Sampling
- Drinking Water Databases
- Meteorology
Exposure Data Sources

- Human Biomonitoring
- Personal Sampling
- Exposure Surrogates
 - Survey Data
 - Modeled Exposures
Health Data Sources

- Notifiable diseases
- Laboratory specimens
- Vital records
- Sentinel surveillance
- Disease registries
- Periodic surveys
- Special studies
- Administrative data systems
What data to collect?

Logistical considerations

- Budget constraints
- Staffing time and expertise
- Available technology
- Planning for future updates
- Linkage and integrations of existing systems
- Security concerns
- User-friendliness
- Can the system be maintained
Planning for Data Collection

• Identify public health needs
• Identify users
• Identify purpose: Why build the system?
• Define objectives: How will the data be used?
• Establish case definitions and standards
• Integration with existing systems
 – functional
 – technical
Data management protocol defines:

- Standard operating procedures
- Data sources
- Data collection procedures
- Data file structure
- Data dictionary/code book
- Documentation and archiving
Evaluation of Data Sources

• Availability of data (format, access, approvals needed, cost)
• Comparability (across geographic areas)
• Coverage (local, state, national; missing data)
• Relevance for tracking (timeliness, etc.)
• Misclassification
• Ability to control confounding, individual level data
• Size, complexity, and format of data files (technology)
Additional Considerations

- Legal requirements
- Confidentiality & security
- Analysis plan
 - Who
 - Table shells
 - Statistics
 - Periodicity
- Dissemination plan
Database

• An organized collection of information (nowadays almost invariably electronic).
• In relational databases, the **table** is a fundamental building block.
• A database consists of one or more tables, which are **related** (conceptually linked) to each other.
A structure that consists of **rows** and **columns**.

The rows are also called records, the columns are also called **fields**.

Example - a table of Students will have the fields:
- Social Security Number
- First name
- Last name
- Date of birth, etc.

There will be one row (record) for each student.
Types of Data Configuration

• **Wide** (one record per person)
 – One line for every individual (name, date of birth, gender, race…)

• **Long** (many records per person)
 – Multiple lines for every individual
 • **Fixed** (visit 1, visit 2, visit 3…)
 • **Variable** (prescription drug utilization, number of diagnoses per hospitalization, number of procedures per visit…)

Data Linkage

- “Linkage” is defined as the physical integration of different databases resulting from a merge that utilizes a common variable.
- Integration of health surveillance and environmental monitoring systems for hazards and exposures.
Key field(s)

- A combination of one or more common variables (fields) that are used for indexed search whose value **uniquely** identifies a record in a table.
- Therefore, no two records in a table can have the same key value.
• When planning a database, one needs to identify **Entities** (the things about which we want to capture information) and the **Relationships** between them.

• Relationships between entities are **one-to-one, one-to-many, or many-to-many**.

![Diagram showing different types of relationships: 1-to-1, 1-to-Many, Many-to-1, Many-to-Many]
Relational Database

- Store data in tables
- Variables are grouped in logical units
 - By data source
 - By visit or interaction with system
 - By type of data (i.e. laboratory test)
- Normalize the tables
- Make prudent choice of primary key(s)
- It implies "logical" (proper) design of a database with minimal redundancy of data.
Data Dictionary/Code Book

- Define and name the variables
- Data attribute, format, and range of permissible values
- Range and logic checks performed
- Coding scheme
 - Use standard coding scheme
 - Be consistent
 - Anticipate missing values
• “Data that describes other data”

• Technical vs. Descriptive
 – *Process-related* or *technical* metadata supports *software* efforts
 – *Descriptive* metadata, which supports users concerned with the software’s *application domain/s* (e.g., medicine, business).
Enterprise Architecture

• The guiding structure and integrating framework for the design and development of information systems (IS)
• Encompasses broad decisions that must be made by an organization as it creates its organizational information support system
Variable Attributes

- Number
 - Integer (whole), real (decimal)
 - Leading zeros
- Character/alphanumeric/text/string
- Logical value (yes/no, male/female)
- Date/time
 - different formats (MMDDYYYY, MMDDYY)
- Missing values
 - “special” missing
Data Coding Standards

- Diagnosis codes (ICD-10)
- Medical procedures codes (CPT)
- National drug codes (U.S. FDA)
- Logical Observations Identifier Names and Codes (LONIC)
- Systematized Nomenclature of Medicine (SNOMED)
- Health Level 7 standard (HL-7)
From data to analytic files

- Raw data stored in data files should not be altered
- Quality “cleaning” of data
 - Range checks
 - Consistency
- Derived variables
- Merged files or variables from other files
Data Linkage

• A unique identifier is needed to link data from different sources
Common Problems

- Duplicate records
- Merging of data files
 - 1-to-1 merge
 - 1-to-many merge
- Errors in programming logic for derived variables
- Inadequate documentation
- De-identification of records
- Version control
 - protocols, computer programs and reports
Historical Perspectives

- Hierarchical Databases (mid 60s)
- Network Databases (late 60s)
- Relational Databases (late 60s to present)
- Object-Oriented Databases and Object-Relational Databases (late 80s to present)
I'm not sure it is clear what these are or how they are different

J Herbstman, 2/2/2005
Why Study the Relational Model?

• Most widely used model.
 – Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
• “Legacy systems” in older models
 – e.g., IBM’s IMS (hierarchical model)
• Recent competitor: object-oriented model
 – ObjectStore, Versant, Ontos, O2
 – A synthesis emerging: *object-relational model*
 • Informix UDS, UniSQL, Oracle, DB2
SQL and file manipulation

- **Structured Query Language (SQL)**
 - Implemented in relational database management systems

- **Frequently used SQL commands**
 - Select variable(s)
 - Combine tables (merge)
 - Apply selection criteria (view, query)
Data Mining

• The process of secondary data analysis of large databases aimed at finding suspected relationships which are of interest or value to the database owners.

• Also known as: “Knowledge discovery”

• Keeping a watchful eye for unsuspected relationships by evaluating large datasets with many diseases and many variables of potential interest without a specific hypothesis
Data Mining: Issues

- No a priori hypothesis
- No pre-specified model form
- Multiple comparisons
- Expected counts
- Granularity
- Data mining tools create analytical models that are predictive, descriptive or both.
Data Warehousing

- The act of gathering data from distributed locations in a single store, usually in some aggregated form for further analysis.

- A data warehouse is a collection of data gathered and organized so that it can easily be analyzed, extracted, synthesized, and otherwise be used for the purposes of further understanding the data.

- It may be contrasted with data that is gathered to meet immediate objectives.
Information and Data Systems

Challenges

• Electronic communication gaps & fragmentation

• Many disparate systems

• Slow adoption of standards

• Technology just arriving on scene for many agencies

• Lack of financial resources
Competing agendas

- Build simple systems ⇔ address complex problems
- Solve immediate problem ⇔ build an integrated IT environment
- Program specialists ⇔ IT specialists
- “Get it done” ⇔ “Do it right”
- Build application today ⇔ Build foundation for tomorrow
Data Linkage – the details

- Data collected for different purposes
- Level of specificity or reporting may not be sufficient (aggregate data)
- Access or permission to use data difficult to obtain, cost or fees associated with use
- Information needed to conduct an epidemiologic study can vary greatly from what is needed for surveillance
- Inadequate variable(s) for indexing
- Methodological limitations
Critical Questions

- Is it possible to “retro-fit” existing data systems for environmental public health tracking?
- How can we use the lessons learned to move forward with recommendations for new data collection for tracking?