sense of the findings. Dissemination should seek to strengthen awareness and enhance the effect of research findings among relevant target audiences. In our experience, those responsible for dissemination have to target the right people with a clear message, presented in an easy to understand format, and communicate via appropriate channels while not losing sight of the organisational and political environment in which the message will be received.

*Paul M Wilson, Frances M Sharp
pmw7@york.ac.uk
Centre for Reviews and Dissemination, University of York, York YO10 5DD, UK

Both authors are part of the team that wrote and produced the issue of Effectiveness Matters on the prophylactic removal of impacted third molars. PMW is a co-author of the evidence review that informed the NICE guidance on the removal of wisdom teeth.


Authors’ reply

We agree with Peter Littlejohns and colleagues that our assessment covers only two of the many pieces of guidance issued by the National Institute for Clinical Excellence (NICE). The reasons we selected these are clearly explained in our Research Letter. In particular, they concentrate on regularly undertaken procedures. Unlike many of the cost-effectiveness guidelines issued by NICE, which assess new technology, these two established procedures lend themselves to a before-and-after analysis.

Littlejohns and colleagues state that a set of independent assessments of the effect of NICE guidance is soon to be published by the University of York. We are of course interested in the assessment of the effectiveness of NICE guidance funded by the National Health Service (NHS) research and design programme. Our study was also independent, as highlighted by the fact that research funding was neither sought nor obtained. Our aim was to do a pragmatic assessment of publicly available guidance using routine hospital data. Such an approach might be all that is available to health-care decision-makers who do not always have the time or the budget for comprehensive academic assessments, as Nicky Cullum and colleagues implied was necessary. We welcome new initiatives such as registries that will help managers make pragmatic decisions in the future.

We note that researchers mainly from the University of York have published a paper assessing NICE guidance on laparoscopic surgery for inguinal hernias.1 They used a similar approach (time-series analysis) and similar data (NHS admissions data) to us, and found similar results, albeit over a shorter period of time. We are surprised that there was no published response or comment either from NICE or from Cullum’s group to that paper.

We would like to address comments concerning our interpretation of the hip replacement guidance2 and the notion that cementless prostheses can be “NICE-guidance compliant”. The NICE guidance might well lack clarity, because in its fifth recommendation it states, “there is currently more evidence of the long term viability of cemented prostheses, which, in many cases, occupy the lower end of the range of prostheses cost, than there is for uncemented and hybrid prosthesis”.3 Since cost-effectiveness evidence influences NICE’s decisions, such a recommendation might be interpreted as suggesting that cemented prostheses should normally be used in preference to other types. We believe that clinicians would welcome a list of prostheses that comply with the guidelines, and presume that the research by Cullum and colleagues will assist in this respect.

Concerning the effectiveness of passive diffusion of guidance, we are not dismissing the value of printed educational materials. Nor was it our intention to disparage the work of NICE or the importance and relevance of their guidance. However, along with Paul Wilson and Frances Sharp, we are suggesting that a more active dissemination strategy might be even more effective in promoting NICE recommendations.

*James Piercy, James Ryan
james.piercy@adelphigroup.com
Mapi Values, Bollington SK10 5JB, UK


Simian retroviral infections in human beings

Nathan Wolfe and colleagues’ report on infection of humans with simian foamy viruses (Mar 20, p 932)1 has re launched the discussion about simian retrovirus infections as zoonoses. This concept was generated by tracing HIVs to simian sources in Africa.2 Although the simian origin of HIV, human T-cell lymphotropic virus (HTLV), and now foamy viruses is acknowledged,3,4 the hypothesis that retroviral infections are zoonoses is not supported by current knowledge and must be questioned.

In striking contrast to such discussions, studies indicate thus far that simian immunodeficiency virus (SIV) does not cause AIDS-related zoonosis. These arguments have combined two issues: the origin of HIV and the origin of AIDS. They are different questions.

Despite frequent human exposure to SIV-infected monkeys in Africa, only 10 known cross-species transmissions to...
human beings have occurred in the past 45 years, and only four resulted in significant human-to-human transmission (HIV-1 groups M and O and HIV-2 groups A and B). The closest HIV relatives to SIVs are HIV-1 group N and HIV-2 groups C–G. Each is extremely rare: only six patients are known to have been infected with HIV-1 group N and only single individuals by HIV-2 groups C–G.2,3 Most SIVs are therefore epidemiologically failures in human beings.

In central and west Africa, human exposure to retroviruses through hunting and butchering is ancient, but the AIDS epidemic emerged only in the second half of the 20th century, supporting a theory that some factor or factors intervened in the spread of SIV and its emergence as HIV in human populations. These factors could be deforestation, increase of urbanisation and travel in the 20th century, or increase in unsafe injections and transfusions. This factor might promote viral adaptation through serial passages or favour adaptation by other mechanisms such as recombinant. However, all theories remain unproved.

Experimental or accidental transmission of SIVs to different species is often cleared by the new host, showing that SIV only and not AIDS is spread.4 When SIVsm (SIV by the new host, showing that SIV only replicates in human PBMCs has been done.2,3 Thus, only four peripheral blood mononuclear cells that most SIVs will replicate in human beings. Low pathogenicity in human beings.

and not AIDS is spread.4 When SIVsm (SIV by the new host, showing that SIV only replicates in human PBMCs has been done.2,3 Thus, only four peripheral blood mononuclear cells that most SIVs will replicate in human beings. Low pathogenicity in human beings.

In these days of AIDS, avian influenza, Ebola, and SARS, the question of what launches new epidemics and pandemics is extremely important. The somewhat shocking answer is that we actually know nothing about the factors that launch animal viruses into epidemics or pandemics. Equally important is the question as to why most animal viruses fail to launch sustained human-to-human transmission. These are critically important questions that are being bypassed. When we think zoonosis, we should think of diseases such as rabies. There is no evidence that a person can contract AIDS from a monkey or chimpanzee. There is still a missing link.

Cristian Apetrei, *Preston A Marx pmarxj@tulane.edu
Division of Microbiology and Immunology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA


Nathan Wolfe and colleagues6 provide good and intriguing evidence for the natural transmission of simian foamy viruses to forest-dwelling people in west Africa engaged in hunting or butchering bush meat including that from various species of non-human primates. 61% of those interviewed from several locations reported contact with ape or monkey blood, and of this group of more than 1000 individuals, 1% had antibodies to simian foamy viruses, with the virus confirmed by PCR in three of them. Since the foamy viruses involved were from three different host species, natural transmission to humans beings cannot be a rare event. As the authors rightly comment, such transmission of simian retroviruses belonging to a group other than immunodeficiency viruses raises important issues in relation to the possible range of zoonoses that could emerge. However, the findings have implications, which have not been pointed out, for another aspect of foamy virus studies—ie, the significance of earlier reports of the isolation of foamy viruses direct from human beings.

The first isolation of a human foamy virus (HFV) was made from a biopsy sample of a nasopharyngeal carcinoma after cell growth in vitro for about 15 weeks.7 At a time preceding sequence information and PCR, there was no evidence for the infectious agent either in the original biopsy or the cultures before the virus caused a cytopathic change. Early neutralisation tests with a panel of antisera specific for various animal foamy viruses showed that the isolate had some slight antigenic relatedness to simian foamy virus 6. As a result of this finding, of later work showing sequence homology of HFV with foamy viruses isolated from chimpanzees,8 and of subsequent failure to confirm new HFV infections,9 it came to be believed that the isolate was not derived from the human starting material but was a laboratory contaminant, despite the fact that no monkey cells were held in the laboratory where the isolation took place.

Nasopharyngeal carcinoma has been recognised for a great many years as having an exceptionally high incidence among southern Chinese individuals,5 but it is perhaps less well known that a moderately high incidence is seen among the Kikuyu and other tribes of the Kenyan highlands.10 In the context of the first isolation of foamy virus from a human source, it is worth recalling that the nasopharyngeal carcinoma yielding the biopsy sample used for the experiment was removed from an African patient in Kenya National Hospital in Nairobi. The consumption of bush meat takes place among several groups in east Africa, and in certain circumstances this source of protein has...