Using agent-based models to investigate high-risk adolescent partner formation

Amanda D. Latimore, MA PhD
September 26, 2012
Background: Concurrency \rightarrow STIs

Concurrency: the act of engaging in multiple sexual partnerships that overlap in time

Compared to serial monogamy, given the same total number of partners, **concurrency amplifies STI risk**

- Individual concurrency \rightarrow increases risk of *transmission*
- Partner concurrency \rightarrow increases risk of *acquisition*

Figure credit: Jim Moody and Martina Morris

Percent of people that are connected through their sexual partnerships

Morris & Kretzschmar, 1997; 2009; Aral, 2010

http://optoolkit.hivsharespace.net/index.html
Concurrency → US Racial/ethnic STI disparities

Syphilis

Highest burden in adolescents

Centers for Disease Control, 2011
Background: Black women prefer monogamous men

- 2.6 – 3.1 times the odds of concurrency in Black men (28%) vs. Whites men (13%)

- Adolescent black women express fatalism about the availability of “good” men
 - Monogamous
 - Physical attractiveness - proxy for cleanliness, faithfulness and low STI risk
 - As well as a partner with educational and career goals, that is emotionally supportive, respectful and kind

Then how and why does concurrency occur?
Background: Sex ratio → Concurrency

Proportion of men in the US, 1990

www.nationalatlas.gov

US Census Bureau
Poverty, race and sex ratio - US Census

![Chart showing the ratio of men to women in different categories: General US, Poor white, Poor black, Poor black, MD.]

- **2000**
 - General US
 - Poor white
 - Poor black
 - Poor black, MD

- **2010**
 - General US
 - Poor white
 - Poor black
 - Poor black, MD

Proportion of men (%)

- Baltimore City STD clinic-based, adolescents 15-24 years
Background: Sex ratio driven by violence and disproportionate incarceration

Male firearm homicide mortality rate per 100,000 population

Hu, Webster & Baker, 2008
Background: Sex ratio driven by birth disparity

Trends in male birth proportion by race and ethnicity
Background: Summary

Social Determinants

- Population-level

 - Partner Scarcity

 - Psychosocial Processes
 - Female Tolerance
 - Male Partner Concurrency

 - Concurrency

 - STI Prevalence

Sex Ratio theory & Demographic Opportunity theory
Overarching Goal

To understand how context (partner scarcity) interacts with individual-level partner preferences to form the empirically observed levels of male concurrency

Population: Sexually active, Black, inner-city adolescents

Exposures:
- Proportion of men at the Census tract level
- Female tolerance of male concurrency

Outcomes: Prevalence of men engaged in concurrency

Method: Agent-based modeling
Specific Aims

PART ONE

I. What is agent-based modeling?

II. What is gained by using an agent-based approach?

PART TWO

III. What is the impact of partner scarcity on concurrency relative to female tolerance and can partner scarcity explain the black-white disparity in concurrency?

IV. By what mechanisms can a female preference for monogamy lead to population-level male concurrency?
PART ONE

What do a flock of birds, a school of fish and a herd of bison have in common?
I. What is Agent-based modeling?

A multi-agent, stochastic, discrete-event simulation of individuals/components that are:

- Heuristic
- Adaptive
- Autonomous*
- Interacting
- Interdependent
- Networked

"THE SUM IS GREATER THAN THE PARTS"

Macy, 2002
I. Why Agent-based Modeling?

Health is a complex system

How do you capture using traditional experimental design?
I. Why Agent-based Modeling?

Health is a complex system
I. ABM utility in complex health systems

Agent-based is a holistic approach

- Model **heterogeneous** populations

“A POPULATION OF MODELS, NOT A MODEL OF A POPULATION”

- Understand the dynamic **cross-level feedback** of the individual and the micro/mezzo/macro environment

- Study counter-intuitive or emergent phenomenon using a **bottom-up** approach
Why simulate?

Fear-inspired flight and epidemic dynamics
Epstein, Parker Cummings, Hammond, 2008

Emergency evacuation
Dr. Paul Torrens, Dept of Geographical Sciences, University of Maryland

Adolescent partner formation?
Specific Aims

PART ONE

I. What is agent-based modeling?

II. What is gained by using an agent-based approach?

PART TWO

III. What is the impact of partner scarcity on concurrency relative to female tolerance and can partner scarcity explain the black-white disparity in concurrency?

IV. By what mechanisms can a female preference for monogamy lead to population-level male concurrency?
Complexity # 1: Heterogeneity

Advantage: Ability to capture variation meaningful to the outcome
- More granular predictions
- Better interventions for sub-populations and hubs of risk

Considerations: Variation exists in partner formation strategies and risk
- Social space
- Physical space
- Relationship type and duration
- Within individuals across time and experience

Current application: Variations in partner number, sex ratio, change in tolerance due to experience
Complexity # 2: The interaction of individuals with each other and their environments

Advantage: Individuals do not act in isolation
 - Novel levels of influence for interventions
 - Better predictions

Considerations: Unrealistic to assume full, instantaneous or completely random access to resources in the environment
 - Network position (CONCURRENCY), size, diffusion
 - Movement of individuals through/around built/social environments
 - Error or delay in information exchange

Current application: Partial recognition of partner’s partners, dating network
Complexity # 3: Modeling individual processes

Advantage:

- Closer to understanding high-risk or counter-intuitive behavior

Considerations: Observation may not fully represent underlying process

- Assortative mixing: Do we seek the most attractive or the most similar?
- “Prettier at closing time” phenomenon
- Female acceptance of male concurrency despite preference for monogamy

Current application: Autonomous, locally-constrained decision-making
Methodological Approaches

<table>
<thead>
<tr>
<th>Method</th>
<th>Level of analysis</th>
<th>Transition probabilities</th>
<th>Temporality</th>
<th>Explicit concurrency</th>
<th>Feedback</th>
<th>Heterogeneity</th>
<th>Adaptive and autonomous indiv</th>
<th>Individual-level interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Regression (LDA/MLM)</td>
<td>One (Multiple)</td>
<td>n/a</td>
<td>Static or discretely longitudinal</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Network Analysis</td>
<td>Structure & relative position</td>
<td>n/a</td>
<td>Static or dynamic</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>System Dynamics/Compartmental</td>
<td>Multiple, Aggregate</td>
<td>Differential equations</td>
<td>Dynamic and directed</td>
<td>–</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Discrete Event Simulation</td>
<td>Multiple Queue, resource, entity</td>
<td>Adaptive, Queue logic</td>
<td>Dynamic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Microsimulation</td>
<td>Multiple Individual</td>
<td>Mixing matrices</td>
<td>Dynamic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ABM</td>
<td>Multiple Individual</td>
<td>Adaptive Heuristic</td>
<td>Dynamic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Markov Family</td>
<td>Individual or Aggregate</td>
<td>No memory Independent of history</td>
<td>Dynamic and directed</td>
<td>–</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
<td>–</td>
</tr>
</tbody>
</table>

Stahl, 2008; Luke & Stamatakis, 2011; Gilbert, 2008; Chattoe-Brown, 2009
PART TWO
Specific Aims

PART ONE

I. What is agent-based modeling?

II. What is gained by using an agent-based approach?

PART TWO

III. What is the impact of partner scarcity on concurrency relative to female tolerance and can partner scarcity explain the black-white disparity in concurrency?

IV. By what mechanisms can a female preference for monogamy lead to population-level male concurrency?
AIM 2: Static model (One time point)
Specific Aims

PART ONE

I. What is agent-based modeling?

II. What is gained by using an agent-based approach?

PART TWO

III. What is the impact of partner scarcity on concurrency relative to female tolerance and *can partner scarcity explain the black-white disparity* in concurrency?

IV. By what mechanisms can a female preference for monogamy lead to population-level male concurrency?
AIM 3: Dynamic model (Multiple time points with feedback)

- Social Determinants
- Psychosocial Processes
- Male Partner Concurrency
- Female Tolerance
- Concurrency
- STI Prevalence
THOUSANDS of lines of code
Model Calibration and Validation Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRSTD II<sup>1</sup></td>
<td>Black, inner-city adolescents (14-19 years) recruited from Baltimore STI clinics, 2000-2003</td>
</tr>
<tr>
<td>Sexual network study<sup>2</sup></td>
<td>Population-based sample adolescents (14-19), urban San Francisco neighborhood, 2000</td>
</tr>
<tr>
<td>AddHealth<sup>3</sup></td>
<td>National school-based sample of 15-19 years, 1999</td>
</tr>
<tr>
<td>US probability sample<sup>4</sup></td>
<td>North Carolina population-based case-control study (15-44 years), used control data only, 2002</td>
</tr>
<tr>
<td>National Survey of Family Growth<sup>5</sup></td>
<td>Random sample of HIV negative African American state ID holders in 13 central and eastern North Carolina counties with registered HIV cases (18-59 years), 1997-2000</td>
</tr>
</tbody>
</table>

1. Raw data, Lenoir et al., 2003; Bettinger et al., 2004; Matson et al., 2012; 2. Fichtenberg et al., 2009; 3. Kelly et al., 2003; 4. Doherty et al., 2009a; 5. Doherty et al., 2009b
THE INFLUENCE OF CONTEXT AND COMPOSITION IN THE RISKY PARTNER SELECTION OF URBAN ADOLESCENTS: AN AGENT-BASED INVESTIGATION

Amanda D. Latimore, Pamela Matson, Jonathan M. Ellen, Derek Cummings and David D. Celentano

III. Static ABM

A. What are the relative cross-sectional effects of gender ratio and female tolerance on population-level concurrency?

B. Can partner scarcity explain the black-white difference we observe in male concurrency?
Hypothesized relative effects

Point prevalence of male concurrency

Female Tolerance of Male Concurrency

Partner Scarcity

Low % men

High % men

High Tolerance

Low Tolerance
Static ABM components

Gender Ratio
Female Tolerance

Partner Formation

Female degree constrained

Point prevalence of male concurrency
Other network characteristics
For an individual in a population with a given proportion of men and female tolerance...

III. Static model: Partner formation

Initialization

Seek partners from dating pool

Seek ~ P(4) Seek 1

Available single ♂️?

Yes

Monogamous ♂

Deterministic pairing

Paired

No

Concurrent ♂

Stochastic pairing wp ∝ TOLERANCE

Single
III. Static model: Overall results

KEY FINDINGS:
• Positive association of partner scarcity and female tolerance with concurrency
• Slight advantage of female tolerance?
III. Results – Absolute change

- Change due to sex ratio when tolerance is high
- “Independent effect” of partner scarcity
- Change due to tolerance when partners are scarce
- “Independent effect” of female tolerance
III (A) Comparing relative effects

III (B) Black-white disparity

OR = 2.56 (95% CI: 1.61, 4.07)

Adjusted OR = 3.06 (95% CI: 2.27, 4.13)

Prevalence Ratio = 2.15

(Adimora et al., 2007)
III. Static ABM

A. What are the relative cross-sectional effects of gender ratio and female tolerance on population-level concurrency?
 - Interacting and difficult to compare
 - Similar in magnitude

B. Can partner scarcity explain the black-white difference we observe in male concurrency?
 - Yes. And changes in tolerance just as impactful
IV. Dynamic ABM

How/why does female tolerance develop?

A. Primary mechanism: RELAXATION hypothesis

→ What are the short- and long-term impacts of an effective tolerance intervention?

B. Alternative mechanism: MISINFORMATION hypothesis
Dynamic ABM components

RELAXATION hypothesis

- **Varied INPUT**
 - Gender Ratio
 - Tolerance = 0 at time\(_0\)

- **Learning**

Time

- **Output**
 - Prevalence of male concurrency
 - Other network characteristics
 - Relationship characteristics

Female degree constrained
IV. Dynamic ABM

<table>
<thead>
<tr>
<th>Relationship Duration (RD) + 1</th>
<th>Time + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check partner status with error</td>
<td></td>
</tr>
<tr>
<td>Check RD</td>
<td></td>
</tr>
<tr>
<td>Break up</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image_url)

- **LEARNING**
 - “Prettier at closing time”

- **Attempts <= Threshold**
 - Attempts + 1

- **Attempts > Threshold**
 - Tolerance increase
IV. Population-level data
Change in tolerance across time

[Graph showing change in tolerance across time with data points for different age groups and thresholds.]

Average age, 50% threshold

<table>
<thead>
<tr>
<th>% Men</th>
<th>Mean (SD)</th>
<th>% populations that reach threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-40</td>
<td>16.2 (.44)</td>
<td>100%</td>
</tr>
<tr>
<td>42.5-47.5</td>
<td>18.4 (.97)</td>
<td>100%</td>
</tr>
<tr>
<td>50-60</td>
<td>21.6 (.66)</td>
<td>19%</td>
</tr>
</tbody>
</table>

RELAXATION hypothesis
IV. Population-level data
Change in effects across time
When partner scarcity exists:

- Adjusting for tolerance significantly decreases the hazard of male concurrency in a relationship
Take-home point: 2-to-1 decrease in concurrency for every %-point decrease in tolerance, on average, across levels of sex ratio
IV. Population-level data
Long-term impact of a reduction in tolerance

Populations below 50% tolerance

<table>
<thead>
<tr>
<th>% men</th>
<th>Intervention age (step)</th>
<th>N Intervention: Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-40</td>
<td>16.1 (50)</td>
<td>144:156</td>
</tr>
<tr>
<td>42.5 – 47.5</td>
<td>18.2 (75)</td>
<td>89:91</td>
</tr>
<tr>
<td>50-60</td>
<td>21.6 (116)</td>
<td>79:28</td>
</tr>
</tbody>
</table>

Average tolerance at Time_0

- 40
- 50
- 60

Age

Simulation time

0.2 0.4 0.6 0.8 1

0 50 100 150

12 14 16 18 20 22
Key Finding: A one-time reduction in tolerance can have long-term effects on concurrency
THE NEGATIVE IMPACT OF PARTNER SCARCITY ON CONCURRENcy IN URBAN ADOLESCENTS: Guiding interventions using an agent-based model of high-risk partner formation

Amanda D. Latimore, Derek Cummings, Pamela Matson, Jonathan M. Ellen, and David D. Celentano

IV. Dynamic ABM

How/why does female tolerance develop?

A. Primary mechanism: RELAXATION hypothesis

→ What are the **short- and long-term impacts** of an effective tolerance intervention?

About 2 times the change in concurrency for a one-unit change in tolerance – maintained over time
IV (B) Alternate mechanism

- **Relationship Duration (RD) + 1**
- **Check partner status with error**
- **Check RD**
- **Break up**

MISINFORMATION hypothesis

- **LEARNING**

 "Prettier at closing time"

- **Attempts <= Threshold**
 - **Attempts + 1**
- **Attempts > Threshold**
 - **Tolerance increase**
MISINFORMATION hypothesis

IV (B) Results (47.5% men)

Misinformation alone cannot explain the concurrency that we observe (66% of PRSTD sample)
IV (B) Results

35% men (7% of PRSTD sample)

55% men (2% of PRSTD sample)
IV. Dynamic ABM

How/why does female tolerance develop?

A. Main mechanism: RELAXATION hypothesis

→ What are the short- and long-term impacts of an effective tolerance intervention?

 About 2 times the change in concurrency per one-unit change in tolerance, maintained across time

B. Alternative mechanism: MISINFORMATION hypothesis

 Not likely, but a potential point of impact for those exposed to severe partner scarcity

THE NEGATIVE IMPACT OF PARTNER SCARCITY ON CONCURRENCY IN URBAN ADOLESCENTS:
Guiding interventions using an agent-based model of high-risk partner formation

Amanda D. Latimore, Derek Cummings, Pamela Matson, Jonathan M. Ellen, and David D. Celentano
AIM 2: Static ABM

1) Interacting and similar in magnitude of effect on concurrency

2) Partner scarcity can explain the black-white disparity in concurrency
AIM 3: Dynamic ABM

1) A decrease in tolerance can have short- and long-term impact on concurrency

2) What we observe is likely due to both a relaxation of preferences and misinformation
Limitations

• Need for simplifying assumptions
 • From the perspective of the female only
 • Stable sexual networks
 • Only intra-racial partner formations

• Generalizability
 • Limited data available to inform some components
 • Serious computing power needed for dynamic models
 • Insights limited by current statistical methods
 • Almost any result can be “calibrated” into a simulation
Strengths

• Systems science is the only way to address the feedback loops present in health systems
 • ABMs most appropriate for individual-level complexity
• Model was calibrated and validated with empirical data
• Ability to model concurrency
• Observe generative processes
• Examination of interdependent factors interacting across levels/time
• Ability to model process of agent learning
Innovation and public health impact

- Provides support for a common explanation for black-white disparity in concurrency and possibly STIs
- Provides insight into an empirically unobserved mechanism between partner preference and selection
- Novel application of an emerging method
- Application to a growing field that recognizes concurrency and other network-level STI risks
- Showed the potential effects of an alternative points of impact
- ~*Complexity*~
Future Directions – Where do we go from here?

Applications

- Systemic interventions for underlying causes of male scarcity
- Investigate affects of expanding female partner pool
- Groundwork for tolerance measures

ABM extensions

- Investigate individual interventions
- Multidimensional partner characteristics
- Dynamic potential partner networks
- Changes in the accuracy of partner evaluations by intimacy
- Incorporate STI transmission and condom use
- Modify for other contexts – Concurrency is a hot topic!