Primary care, race, and mortality in US states

Leiyu Shia,*, James Macinkob, Barbara Starfielda, Robert Politizz, Jiahong Xua

aDepartment of Health Policy and Management, Johns Hopkins School of Public Health & Hygiene, 624 North Broadway, Room 409, Baltimore, MD 21205-1996, USA
bDepartment of Nutrition, Food Studies and Public Health, New York University Steinhardt School of Education, New York, NY, USA
cBureau of Primary Health Care, Health Resources and Services Administration, US Department of Health and Human Services, Bethesda, MD, USA

Available online 22 January 2005

Abstract

This study used US state-level data from 1985 to 1995 to examine the relationship of primary care resources and income inequality with all-cause mortality within the entire population, and in black and white populations. The study is a pooled ecological design with repeated measures using 11 years of state-level data (n = 549). Analyses controlled for socioeconomic and demographic characteristics. Contemporaneous and time-lagged covariates were modeled, and all analyses were stratified by race/ethnicity. In all models, primary care was associated with lower mortality. An increase of one primary care doctor per 10,000 population was associated with a reduction of 14.4 deaths per 100,000. The magnitude of primary care coefficients was higher for black mortality than for white mortality. Income inequality was not associated with mortality after controlling for state-level sociodemographic covariates. The study provides evidence that primary care resources are associated with population health and could aid in reducing socioeconomic disparities in health.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: USA; Primary care resources; Mortality; Ethnicity

Background

In the past decade, substantial literature suggested a significant association between income inequality and mortality both in the US and abroad (Blakely, Lochner, & Kawachi, 2002; Wilkinson, 1996; Kennedy, Kawachi, & Prothrow-Stith, 1996; Lochner, Pamuk, Makuc, Kennedy, & Kawachi, 2001; Lynch et al., 1998; McLaughlin & Stokes, 2002; Subramanian, Blakely, & Kawachi, 2003). The greater the gap in income distribution between the rich and poor in a given area, the higher the mortality rate for the population of that area. However, several recent studies have failed to find a similar relationship between income inequality and various manifestations of health (Mellor & Milyo, 2001; Wagstaff & van Doorslaer, 2000; Lynch et al., 2004).

Increasingly, studies have examined the pathways and mechanisms through which income inequality might affect health. Psychosocial theories give over-riding influence to psychological effects. These theories hold that phenomena such as alienation are the main path of the ill effect on health (Wilkinson, 1999; Everson et al., 1996; Miller, Smith, Turner, Guijarro, & Hallet, 1996).

Social capital explanations hold that social relationships influence health either directly or through other phenomena. One postulated explanation is that more egalitarian areas are more socially cohesive, leading to less psychosocial stress and better health status. For
example, Kawachi et al. demonstrated that where income differences are smaller, people are more trusting of one another and more likely to participate in communal activities, and this social cohesiveness is linked to lower overall mortality (Kawachi, Kennedy, Lochner, & Prothrow-Stith, 1997) and better self-rated health (Kawachi, Kennedy, & Glass, 1999). Other investigators have postulated that the political and policy context is itself a precursor to health inequalities (Kawachi et al., 1999; Dye, 1991; Navarro & Shi, 2001).

Another alternative explanation for the apparent relationship between income inequality and health is that the relationship, at least in the United States, is partially or wholly confounded by race (Deaton & Lubotsky, 2003). The authors argue that the association between income inequality and health in the US might be the result of confounding with race, since those areas with a higher proportion of black population also have higher income inequality and higher mortality—for whites as well as for the entire population (Deaton & Lubotsky, 2003). At the same time, McLaughlin and Stokes (2002) found that in an ecological study of US counties, income inequality was a significant predictor of mortality for both black and white populations even though racial concentration interacted with income inequality measures. Because of the possibility of confounding and evidence of differential patterns of access to and use of primary care services among different racial groups, the analyses presented here stratify for race (Shi, 1999).

Our previous published studies have suggested an important role for health system factors, especially the role of primary care resources, and showed the likely importance of primary care in reducing the apparent adverse effects of income inequality (Shi, Starfield, Kennedy, & Kawachi, 1999). Using 1990 US state-level data, we found a significant association between primary care physician supply and reduced mortality, increased life expectancy, and improved birth outcome, even after controlling for income inequality and population socio-demographic characteristics. Similar findings were noted using US metropolitan areas as the unit of analysis (Shi & Starfield, 2001) and in mixed-level analyses (Shi & Starfield, 2000; Shi, Starfield, Politzer, & Regan, 2002). Although results were consistent among units of analysis, our previous studies were limited to a single year’s observation. The current study addresses limitations of previous studies by using 11 years of US state-level data.

We assess the impact of primary care by examining if there is an independent relationship between primary care and mortality and by determining whether primary care attenuates the impact of socioeconomic characteristics on mortality. The logic of the connection between primary care and reduced mortality is reflected in the goal of primary care (Starfield, 1994, 1992) and mounting evidence that links primary care with better health status (Starfield, 1998; Shi, 1994, 1997; Macinko, Starfield, & Shi, 2003).

Primary care addresses the most common problems in the community to maximize health and well-being. It integrates care where there is more than one health problem, and deals with the context in which illness exists and influences the responses of people to their health problems. It is care that organizes and rationalizes the deployment of all resources, basic as well as specialized, directed at promoting, maintaining, and improving health. Findings of an independent effect of primary care on reduced mortality would be particularly relevant as it would represent a specific mechanism for addressing at least some of the health impact of growing social inequalities in the United States.

This study is unique in that it seeks to examine the independent relationship between income inequality and population mortality, shed light on the still contentious issue of the impact of racial composition on the observed relationship between income inequality and health, and assess the extent to which primary care might mediate this association. By using 11 years of data, we are able to examine the relationship among the variables of interest in more than one period, thus improving the robustness of our findings to changes over time. By performing race-stratified analysis, we are able to examine the differential effects of income inequality and primary care on white and black mortality. As noted above, previous research has indicated that the effect of income inequality on health may be confounded by the inclusion of the fraction of African-Americans in the population (Deaton & Lubotsky, 2003).

Methods

Data and measures

Data for this study came from a variety of sources including the Compressed Mortality Files (US Department of Health and Human Services National Center for Health Statistics, 2000), the US Department of Commerce and the Census Bureau (1985–1996), and the National Center for Health Statistics (1985–1996). Physician data were obtained from the American Medical Association (1985–1996). Data were drawn from 1985, the earliest year data from which state-level household income intervals were readily available, to 1995, the year of the latest data availability at the time of the study.

The dependent variables total mortality, white mortality, and black mortality, were standardized for age to the 1990 US population and expressed as the number of
In analyzing the data, we first examined the association between primary care, income inequality, sociodemographic covariates, and mortality using Pearson’s correlation coefficients. For multivariate analyses, we used a pooled, ecological design with repeated measures. This design analyses a cross-section of ecologic units of observation (states) over a span of time (years). Ordinary Least Squares regression will not yield proper estimates on data containing repeated measures. For this reason, parameters were estimated using the SAS PROC MIXED procedure (SAS, 1999). This approach uses a maximum likelihood estimator to account for correlation among error terms due to the presence of repeated measures (each year) on the same unit (state). Moreover, this procedure provides estimates for both fixed and time-varying covariates, and models not only the means of the data but also the variances and covariances (Littell, Pendergast, & Natarajan, 2000). Examination of the data suggested use of the compound symmetry variance structure to appropriately adjust standard errors (SAS, 1999). States were treated as fixed effects, thus allowing the model to control for relatively stable inter-state differences, such as policy context and historical differences in technology, resources, and other determinants of population health (Hsiao, 1986).

A set of nested models was designed to examine the independent effect of primary care and income inequality on mortality and the extent to which the addition of
primary care to the statistical model attenuates the association between income inequality and mortality. In Model 1, only income inequality was used as a predictor of mortality. In Model 2, mortality is predicted by both income inequality and sociodemographic characteristics of the population. Model 3 includes primary care along with the other covariates included in Model 2. Regression coefficients and standard errors of the measures are presented along with tests of statistical significance. Changes in the regression coefficients of income inequality between models one and two indicate the extent to which sociodemographic characteristics mediate the association between income inequality on mortality. Changes in the regression coefficients of sociodemographic characteristics between models two and three indicate the extent to which primary care mediates the association between sociodemographic characteristics on mortality.

Since the effects of the predictors on mortality are expected to materialize over time, we also conducted analyses with time-lags. Three time-lagged models are presented. A 1-year lag model shows total mortality as a function of the independent measures of the previous year. A 3-year lag model shows total mortality as a function of the independent measures 3 years prior, and 5-year lag model shows mortality as a function of the independent measures 5 years prior. The time-lag models are meant to test the hypothesis that if covariates are truly associated with health outcomes, then this association is likely to be the result of prior exposure. Although the time-lagged models cannot establish causality, they do provide stronger evidence that the relationships observed in the contemporaneous models are valid.

In addition to total (all races) mortality analyses, we also performed race-specific (i.e. black mortality and white mortality, respectively) analyses to examine if the magnitude and significance of predictors of mortality vary according to race.

Results

During 1985–1995, there was a decline in all-cause mortality. The mean state age-adjusted mortality rate dropped from 821 to 762 per 100,000 population (Fig. 1, Panel 1). In the same period, there was a steady increase in primary care physicians, from 5.02 to 6.04 per 10,000 population (Fig. 1, Panel 2). Income inequality within states fluctuated during the period with an overall worsening trend: the mean of the Gini coefficient among states increased from 0.41 to 0.43 during the period (Fig. 1, Panel 3).

Table 1 presents the correlation matrix range (1985–1995) among total mortality, income inequality,
primary care, and sociodemographic indicators. Both primary care (inversely) and income inequality (positively) were significantly associated with total mortality ($p<0.01$ for primary care and $p<0.05$ for income inequality). Among sociodemographic indicators, blacks ($p<0.01$), and unemployment ($p<0.05$) are significantly and positively related to mortality; education ($p<0.01$) is significantly and inversely related to mortality. Metro is not significantly related to mortality. In addition, primary care is positively and significantly related to metro and education. Income inequality is significantly and positively related to black ($p<0.05$) but inversely related to education ($p<0.01$).

Table 2 presents the regression coefficients and their significance of the mixed model procedure examining the extent to which income inequality and primary care affect population mortality. In Model 1 under the same year analysis, the effect of income inequality on mortality is examined. A significant effect of income inequality on mortality was noted ($p<0.01$). In Model 2, the effects of both income inequality and sociodemographics on mortality are examined. Inclusion of sociodemographics, particularly Percent of Black reduces the regression coefficient of income inequality to insignificance. In Model 3, the effect of primary care on mortality is examined, while controlling for income inequality and sociodemographics. The inclusion of primary care reduces the magnitude of all sociodemographic regression coefficients, although only metro loses statistical significance. In model 3, primary care is independently and inversely associated with mortality. An increase of one primary care doctor per 10,000 population is associated with a reduction of 14.4 deaths per 100,000 population, or 1.44 deaths per 10,000 population, after taking into account the effects of income inequality and the sociodemographic correlates of mortality.

Results of the same year analysis were essentially replicated in time-lagged models (also in Table 2). A careful examination of the time-lagged models indicates that the magnitude of the association between primary care and mortality remains stable over time, suggesting a lagged effect of primary care on mortality. The association between income inequality and mortality remains insignificant in time-lagged analysis after controlling for sociodemographic characteristics.

Table 3 presents the regression coefficients and their significance from the mixed model procedure examining all-cause mortality stratified by race. The stratified analyses yield similar results to those observed in the total mortality analysis. Income inequality was significantly associated with mortality only in model 1, where neither sociodemographic characteristics nor primary care were included in the model (model 1) ($p<0.001$). The magnitude of the income inequality coefficient was significantly higher for black mortality than for white
Table 2

<table>
<thead>
<tr>
<th>Model</th>
<th>Same year</th>
<th>1-year lag</th>
<th>3-year lag</th>
<th>5-year lag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Intercept</td>
<td>409.3 (39.3)</td>
<td>1000.1 (36.7)</td>
<td>1023.6 (34.1)</td>
<td>384.1 (40.3)</td>
</tr>
<tr>
<td>Gini</td>
<td>901.1** (91.7)</td>
<td>110.1 (65.1)</td>
<td>52.4 (62.3)</td>
<td>956.0** (94.7)</td>
</tr>
<tr>
<td>Black</td>
<td>370.1** (24.0)</td>
<td>343.9** (23.2)</td>
<td>376.9** (24.9)</td>
<td>350.9** (24.0)</td>
</tr>
<tr>
<td>Metro</td>
<td>-0.3* (0.1)</td>
<td>-0.1 (0.1)</td>
<td>-0.3** (0.1)</td>
<td>-0.1 (0.1)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>7.8** (1.0)</td>
<td>6.4** (1.0)</td>
<td>8.2* (1.0)</td>
<td>6.9** (1.0)</td>
</tr>
<tr>
<td>Education</td>
<td>-3.2** (0.3)</td>
<td>-2.8** (0.3)</td>
<td>-3.0** (0.3)</td>
<td>-2.5** (0.3)</td>
</tr>
<tr>
<td>PC</td>
<td>-14.4** (2.1)</td>
<td>-14.8** (2.2)</td>
<td>-14.8** (2.2)</td>
<td>-14.8** (2.2)</td>
</tr>
</tbody>
</table>

*p < 0.05; **p < 0.01.
*Estimated coefficients and standard errors (in parenthesis) were provided from the MIXED models.

Table 3

<table>
<thead>
<tr>
<th>Model</th>
<th>White mortality</th>
<th>Black mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Same year</td>
<td>5-year lag</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Intercept</td>
<td>604.2 (36.9)</td>
<td>1202.6 (44.2)</td>
</tr>
<tr>
<td>Gini</td>
<td>684.5** (85.3)</td>
<td>-39.5 (77.5)</td>
</tr>
<tr>
<td>Metro</td>
<td>0.1 (0.1)</td>
<td>0.2* (0.1)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>8.8** (1.2)</td>
<td>7.2** (1.2)</td>
</tr>
<tr>
<td>Education</td>
<td>-4.8** (0.3)</td>
<td>-4.1** (0.3)</td>
</tr>
<tr>
<td>PC</td>
<td>-15.8** (2.5)</td>
<td>-16.5** (3.8)</td>
</tr>
</tbody>
</table>

*p < 0.05; **p < 0.01.
*Estimated coefficients and standard errors (in parenthesis) were provided from the mixed models.
mortality. However, for both races, inclusion of sociodemographics rendered income inequality statistically insignificant.

Primary care exhibited a similar relationship between black and white mortality, although the magnitude of the association was higher for black mortality. In the complete model (model 3), primary care is significantly and inversely associated with mortality, after controlling for income inequality and sociodemographic correlates of mortality. In the white population, an increase of one primary care doctor per 10,000 population is associated with a reduction of 1.58 deaths per 10,000 population. In the black population, primary care was associated with a reduction of 3.97 deaths per 10,000 population. For both populations, the inclusion of primary care reduces the magnitude of other sociodemographic variables. These results were replicated in time-lagged models (also in Table 3). The effect of primary care on white and black mortality remains relatively stable over time (see 5-year lag models). The effect of income inequality on mortality remains insignificant in time-lagged analysis after controlling for sociodemographic characteristics.

Discussion

This study confirmed earlier findings that primary care was associated with lower mortality and partially mediated the association between socioeconomic variables and mortality (Shi et al., 1999, 2002; Shi & Starfield, 2000, 2001). These findings are significant because they provide more robust evidence of a relationship between primary care physicians and lower state mortality than was possible by previous cross-sectional analyses. That primary care remained significant after including income inequality and sociodemographic covariates of mortality indicates primary care is likely to be independently associated with lower population mortality. An increase of one primary care doctor is independently associated, on average, with a reduction of 14.4 deaths, per 100,000 population—about a 2 percent decline over current levels.

Race-specific stratified analyses demonstrated that the relationship between primary care and mortality was not confounded by race. Primary care is significantly and inversely associated with white and black mortality, after controlling for sociodemographics and income inequality. However, primary care exerted a greater impact on black mortality than white mortality (2.5 times or 3.97/1.58). These findings are consistent with previous studies demonstrating that an increase in primary care resources in areas of high social inequality would result in greater health improvements (lower mortality) than would the same increase of primary care resources in areas of lower social inequalities (Shi et al., 2002).

Results of time-lagged models demonstrate that in addition to a contemporaneous association, primary care also has a latent relationship on mortality. These findings are consistent with prior postulated benefits specific to primary care adequacy at the population level (Starfield, 1992, 1994, 1998; Shi, 1994, 1997; Macinko et al., 2003). According to the results of this study, primary care is associated with improvements in health—reductions in mortality over time—while other risk factors (e.g. unemployment, education) are positively associated with eroding health status over time. This result points to a longer-term contextual impact of primary care resources at the state-level and increasing primary care resources might represent one strategy to at least partially offset the effects of “accumulated disadvantage” on population health. There is evidence that (at least in Europe) differential access to primary care and other preventive services over the period of several decades may be partially responsible for current inequalities in health (Mackenbach, Stronks, & Kunst, 1989; Paterson & Judge, 2002).

These findings are also consistent with other research that attributes a significant percentage of the increase in life expectancy in the developed world over the past 50 years to advances in health care (Bunker, 2001). In all, clinical services, composed of preventive services as well as therapeutic intervention, were credited with approximately five of the 30 years of increase in life expectancy since 1950 (Bunker, Frazier, & Mosteller, 1995). One postulated mechanism for the impact of primary care is that access to a regular source of primary care may improve prevention and early detection of chronic diseases (Shea, Misra, Ehrlich, Field, & Francis, 1992). Primary care makes its contribution to the health by providing comprehensive, coordinated, and longitudinal care upon first contact with the health system (Starfield, 1998). There is evidence that high-quality primary care can also lead to more efficient secondary and tertiary care (Casanova, Colomer, & Starfield, 1996; Casanova & Starfield, 1995). We hypothesize that the unique features of primary care such as continuous, longitudinal, and person-focused care, may also work to reverse some of the negative health effects of social inequalities by “short-circuiting” the ability of long-term stressors to produce chronic ailments.

From a policy perspective, the promotion of primary care may serve as a more feasible and less expensive strategy for combating mortality and for reducing socioeconomic disparities in health, compared with either social policy that addresses sociodemographic determinants of health or behavioral modifications. Such a hypothesis at least deserves consideration in the face of declining health levels of the US relative to
comparably industrialized nations (Starfield & Shi, 2002).

Numerous ecological studies, mostly cross-sectional, have provided support for the hypothesis that unequal distributions of income are associated with high mortality in populations (Blakely et al., 2002; Wilkinson, 1996; Kennedy et al., 1996; Lochner et al., 2001; Lynch et al., 1998; McLaughlin & Stokes, 2002; Subramanian et al., 2003). Other studies, however, have challenged this finding (Mellor & Milyo, 2001; Wagstaff & van Doorslaer, 2000; Lynch et al., 2004). Our analysis indicates that income inequality is significantly associated with mortality only in analyses where it is the only variable. This effect becomes insignificant after taking into account population sociodemographic characteristics. This finding supports recent studies that claim income inequality has an apparent effect only because it is associated with other variables related to mortality. It reaffirms the significant association between population sociodemographic characteristics and mortality and implies that studies of the impact of income inequality on health need to include other determinants of health. From a policy perspective, improvement in population health is likely to require a multi-pronged approach that addresses sociodemographic determinants of health as well as strengthening primary care.

In interpreting the results of this study, several limitations require consideration. First, the finding of a relationship between primary care physicians and lower population mortality does not necessarily imply that the mere presence of more primary care physicians assures either that more individuals in the population are exposed to primary care or that the delivery of primary care will produce better health outcomes at the individual level. More particularly, primary care physician to population ratio is a structural feature of health systems; such characteristics can only operate through behavioral (process) characteristics such as the strength and quality of actual primary care practice. Only studies performed at the practice or individual level would test these hypotheses. Unfortunately, there are no data that make it possible to adequately characterize receipt of good primary care (as distinguished from receipt of ambulatory care services, which also include specialty care) at either national or other levels.

Another limitation is that models using ecological data may be more prone to model misspecification due to a greater likelihood of unmeasured confounding variables at the individual level. However, we cannot understand or improve patterns of population health without also considering structural determinants at the societal level (Lynch & Kaplan, 1997; Diez-Roux, 1998). Because the study was performed at the state level, the findings reported are not necessarily generalizable to other types of geographic areas (such as metropolitan areas or counties).

There exists the possibility that there were other unmeasured, latent characteristics of states also associated with increased primary care and that these confounding variables (rather than primary care) are the true source of changes in mortality rates at the state level. As a sensitivity test, we included state fixed effects in the models in order to control for unobserved, time-invariant state characteristics. These fixed effects represent relatively stable features of each state and might include characteristics such as culture, historical patterns of racism, and historical differences in resources. Inclusion of fixed effects did not alter any of the results reported previously. Nevertheless, it is still possible that time-varying state characteristics such as policies to improve environmental quality or safety, availability of new medications or improved technology, or even reimbursement policies that encourage more effective primary care practice, might influence mortality and also be associated with policies to increase the number of primary care physicians. As we found increasing explanatory power of primary care physicians with the passage of time, it is also possible that primary care itself is improving in quality either due to better organization and delivery or to more effective interventions.

A final limitation is that the primary care measure used could also have been improved upon. For example, other providers such as doctors of osteopathy, nurse practitioners, and other professionals also practice primary care and were not captured. Therefore, it is likely that the study underestimated the overall impact of primary care on population health.

References

