For more information about the Comstock Center, visit our website:
http://www.jhsph.edu/comstockcenter

The George W. Comstock Center for
Public Health Research and Prevention
1100 Dual Highway, Suite A
Hagerstown, MD 21740
Phone: 301.791.1847, 301.733.8860, 301.797.3589
Fax: 301.791.3541

Center Director:
Josef Coresh, MD PhD
coresh@jhu.edu

Center Operations Director:
Pat Crowley, M.S.
pacrowle@jhsph.edu

Health Monitoring Unit Supervisor:
Judy Hoffman-Bolton
jhbolt@jhsph.edu
Message from the Director

The George W. Comstock Center for Public Health Research and Prevention connects scientists, students, and staff at Johns Hopkins University with participants from Washington County, Maryland, to improve the evidence base for prevention efforts. The science aims to leave a lasting legacy of data and knowledge which will improve health and prevent disease in Washington County, nationally and internationally. We benefit from nearly a century of innovation and collaboration between scientists and the community. New studies benefit from the data, experience and wisdom accumulated in previous studies.

The research facility we opened in 2011 brings together our original unit, based at the Health Department since 1962, with the downtown Hagerstown unit, which has operated since 1986. Having both units under one roof facilitates sharing expertise across the full range of research activities, from large mail surveys and specimen bank studies to in-depth clinical research studies. Our strengths in clinic-based studies of heart disease, diabetes, aging, cognition and sleep disorders will enhance our leading studies of cancer etiology as they require more in-depth molecular characterization. The new facility efficiently uses equipment across studies largely funded by the National Institutes of Health and welcomes new leading science.

Our staff, led by Ms. Patricia Crowley and Ms. Judith Hoffman-Bolton, have a strong track record of collecting the highest quality data through an in-depth knowledge of the community and a commitment to respecting the participants’ VIP status as the people who donate their time and experience.

This year marks the midpoint of ARIC visit 5, initiation of the ARIC cancer study and continued success of our ongoing studies. We are proud to have grown despite a difficult economy to 35 outstanding staff members in Hagerstown.

Faculty based at Johns Hopkins University are committed to designing the best possible studies and obtaining the funding to make them happen. I strongly believe that data are the gift that keeps on giving and thank everyone for their help in allowing us to advance prevention now and in the future.

José J. Corsh
INSTALLATION OF JOSEF CORESH, MD, PHD, MHS, GEORGE W. COMSTOCK PROFESSORSHIP IN EPIDEMIOLOGY
Wednesday, November 28, 2012 4:00 p.m.
Sheldon Hall 615 N. Wolfe Street Johns Hopkins Bloomberg School of Public Health
George W. Comstock Professorship – Established 2012

Josef Coresh, MD, PhD, Inaugural George W. Comstock Professor
A Brief History of Health Research Collaboration in Washington County

In 1921, the Johns Hopkins University’s Washington County Health Demonstration started. One of the first studies was the series of Hagerstown Morbidity Surveys, the first truly representative community health surveys. Other pioneering research studies were studies on child growth and dental caries in the 1930s.

In 1957, the National Cancer Institute established the Environmental Cancer Field Research Project in a building adjacent to the health department. However, when, after several years of data collection, none of the expected associations of cancers with geography developed, the National Cancer Institute decided to terminate the study and the building sat idle.

In 1962, the Johns Hopkins Training Center for Public Health Research was established. Early support of the Center came from a contract with the National Cancer Institute to conduct a private health census of the county to collect personal and housing information that would allow completion of the study of geographic and residential distribution of cancer cases. This 1963 census of ~90,000 residents was the basis for a series of health studies for many years and continues to be today. A large specimen bank study, Operation CLUE, was conducted in 1974 followed by a second county health census in 1975. The 1980s saw the launch of several large scale studies, including ARIC, CLUE II, and CHS. Following Dr. Comstock, the center was directed by Dr. Helzlsouer and since 2008 by Dr. Coresh. A new facility opened in 2011 at 1100 Dual Highway to merge all staff activities and expand the scope of research.

The Comstock Center collaborates with local health agencies including Washington County Health Department, Washington County Hospital (now called Meritus Medical Center), and Western Maryland Hospital Center. Washington County is an outstanding place to conduct health studies. It has a state-of-the-art hospital and medical community. Most importantly, the population has a high interest in health research and willingness to participate in projects that will benefit the advancement of medical knowledge in order to improve the health of future generations and society as a whole.
Conducting Health Research in Washington County

Center staff based in Hagerstown, in the heart of Washington County, Maryland, have organized and collected data since 1921, accumulating a wealth of data that rivals or exceeds any other community in the world. Staff bring a wealth of experience and in depth knowledge of research methods and of the community. Several leaders stand out for their contributions over the years. CLUE I data collection in 1974, was organized by Knud Helsing working closely with Drs. Cedric Garland, George Comstock and Abraham Lilienfeld. Sandra Clipp, MA, MPH led the staff operations during CLUE II, overseeing many studies from 1988 to 2010. Since 2010, Judith Hoffman-Bolton has overseen the staffing of the CLUE studies. Joel Hill, MS played a key role in establishing the research center in downtown Hagerstown working closely with Drs. Comstock and Szklo. She hired, trained and supervised the staff in that unit for over a decade and subsequently established the staffing structure for the MESA study and, although retired, continues to teach on the Baltimore campus. Joel Hill mentored numerous staff, including Ms. Crowley, in the management of large epidemiologic studies. Patricia Crowley, MS has led the ARIC and CHS staff since 1999. She is now the Center Operations Director in Hagerstown, coordinating activities of over 30 staff members. Over the decades the center’s staff numbers have varied from over 100 during the active phase of the CLUE studies to less than a dozen. Dr. Comstock’s observation that the center’s staff are outstanding remains as true as ever.

Washington County Sociodemographic and Health Facts

Total population: 148,203 in 2011
Racial distribution: 85% White, 10% Black, 5% Latino, Asian or other
Life expectancy: 78.1 years

Top 4 employment sectors: (1) Services, (2) Retail trade, (3) Government, (4) Manufacturing

Primary Causes of Death, 2009

Source: Maryland Vital Statistics

- Heart disease 26%
- Cancer 22%
- Chronic lower respiratory disease 6%
- Diabetes 5%
- Stroke 6%
- Accidents 3%
- Influenza and pneumonia 2%
- Kidney disease 4%
- Alzheimer’s disease 2%
- Suicide 1%
- Other 23%
The Atherosclerosis Risk in Communities (ARIC) study is a prospective epidemiologic study conducted in four U.S. communities, including Washington County, Maryland. Sponsored by the National Heart, Lung and Blood Institute, ARIC was originally designed to investigate the etiology and natural history of atherosclerosis, the etiology of clinical atherosclerotic diseases, and variation in cardiovascular risk factors, medical care and disease by race, gender, location and date. ARIC data have also become an important resource for the study of diabetes, kidney disease, and other chronic diseases. Future research will examine the vascular basis of aging-related dementia and cancer.

ARIC includes two components: cohort and community surveillance. The cohort component began in 1987. Each field center randomly selected and recruited approximately 4,000 individuals ages 45 to 64 from a defined population in their community. A total of 15,792 participants received an extensive examination, including medical, social and demographic data. These participants were reexamined every three years, with the second visit in 1990-92, the third in 1993-95, and the fourth in 1996-98. Follow-up occurs yearly by telephone to assess participants’ health status, including hospitalization. A fifth follow-up visit will begin in June 2011 and continue through 2013.

The community surveillance component is designed to measure the community-wide occurrence of hospitalized myocardial infarction, coronary heart disease deaths in men and women aged 35 to 84 years, and since 2005 heart failure (among those aged 55 years and older).

To date, the ARIC project and ancillary studies have led to more than 1000 articles in peer-reviewed journals, and numerous abstracts and other summary reports of ARIC data at various national and international scientific conferences and meetings. The dedication of staff and participants has led to a annual follow-up rate of over 90%.
Objective: Glycated hemoglobin was recently recommended for use as a diagnostic test for diabetes. We examined the association between 2010 American Diabetes Association diagnostic cut points for glycated hemoglobin and microvascular outcomes and formally tested for the presence of risk thresholds in the relationships of glycated hemoglobin with these outcomes.

Methods: Prospective cohort and cross-sectional analyses of 11,357 participants (773 with a history of diagnosed diabetes) from the ARIC Study.

Results: During a median of 14 years of follow-up of individuals without diagnosed diabetes at baseline, clinical categories of glycated hemoglobin were associated with risk of chronic kidney disease. In the absence of diagnosed diabetes, glycated hemoglobin was cross-sectionally associated with the presence of moderate/severe retinopathy. Risk associations were stronger among individuals with a history of diabetes. We did not observe significant thresholds in the associations of glycated hemoglobin with kidney disease risk or retinopathy.

ARIC Neurocognitive Study (ARIC-NCS)
This study focuses on vascular disease, as a potentially preventable, basis for cognitive decline and dementia. The study will add extensive neurocognitive testing (~7,500 participants) and brain MRI imaging (~2,000 participants) to the 25-year follow-up visit of the ARIC cohort (Visit 5, 2011-2013) across its four field centers. ARIC-NCS will be one of the largest studies in the world able to examine long term cognitive decline since ARIC participants completed three cognitive tests during visits 2 and 4 (1992-1995 and 1997-1999). Results will inform dementia prevention strategies by identifying vascular therapeutic targets, optimal timing for interventions and useful intermediate outcomes. The study will also clarify ethnic disparities in dementia burden. Dr. Coresh is the study principal investigator at Hopkins working closely with a large team of experts including Drs. Sharrett, Gottesman, Albert, McKhann and Selnes.

ARIC PET Imaging Study
A brain PET scan with 18F-AV-45 makes it possible to identify accumulation of β-amyloid in the brain, thought to be the hallmark of Alzheimer's Disease. By imaging 300 ARIC participants in three field centers and continuing their follow-up cognitive evaluation, the study will determine: 1) whether vascular risk factors and markers, especially from midlife, are associated with increased β-amyloid binding, which would indicate that vascular disease directly contributes to Alzheimer's Disease changes in the brain, and 2) whether β-amyloid deposits in the brain in combination with vascular risk factors and markers contribute to cognitive impairments and development of dementia. The study was selected by the US President's office as one of the most meritorious for expanded funding since it may help optimize future treatment and prevention trials in individuals with mild cognitive impairment who are at risk for dementia. Dr. Gottesman is the principal investigator.

ARIC MRI Study
Using advanced image processing the MRI brain images in the ARIC-NCS study are used to directly quantify atherosclerosis in the brain to study its risk factors and consequences including cognition and stroke. Dr. Wasserman is the principal investigator.
Education and Cognitive Change over 15 Years: The Atherosclerosis Risk in Communities Study

ALC Schneider • AR Sharrett • MD Patel • A Alonso • J Coresh • T Mosley • O Selnes • E Selvin • RF Gottesman

OBJECTIVES: To evaluate whether education level is associated with change in cognitive performance.

DESIGN: Prospective cohort study.

PARTICIPANTS: Nine thousand two hundred sixty-eight ARIC participants who underwent cognitive evaluation at least twice over a 15-year period.

MEASUREMENTS: Education was evaluated as a predictor of change in word recall, the Digit Symbol Substitution Test (DSST), and word fluency. A random-effects linear regression model, and a time by educational level interaction was used.

RESULTS: Educational level was highly associated with cognitive performance. The effect on performance of a less than high school education (vs. more than high school) was equivalent to the effect of as much as 22 years of cognitive aging, but educational level was not associated with change in cognitive performance in whites or blacks, with the exception of the DSST for whites, in whom those with lower levels of education had less decline in scores.

CONCLUSION: Educational level was not associated with change in cognitive performance, although the higher baseline cognitive performance of individuals with more education might explain lower rates of dementia in more educated individuals, because more decline would have to take place between baseline higher performance and time at which dementia was diagnosed in more-educated individuals. J Am Geriatr Soc 60:1847–1853, 2012.
ARIC Cancer Ancillary (ARIC-Ca)

This study creates an infrastructure in ARIC for population-based research on cancer incidence, mortality, recurrence, progression, and case-fatality.

ARIC was originally designed to investigate the etiology and natural history of atherosclerosis, and over the years, the focus has expanded to other major chronic diseases. In those efforts, repeated anthropometric, lifestyle, medical data, blood samples and biomarkers have been collected.

ARIC-Ca is sponsored by the National Cancer Institute to leveraging this wealth of data, the racial diversity of the cohort, and the cohort’s long-term follow-up to enhance cancer epidemiology research. This work builds on initial studies by Dr. Aaron Folsom on cancer incidence in ARIC. By 2006, 3,145 participants have been diagnosed with an incident first primary cancer. Cancer cases diagnosed from 2006 to the present are currently being ascertained. For cancer cases diagnosed in the past, information on stage, grade and other tumor characteristics is being collected. With funding from the Maryland Cigarette Restitution Fund, the collection of archived tissue blocks for Washington County Field Center participants who were surgically treated is being piloted. By 2016, 4,900 fully annotated incident cancer cases are expected.

Dr. Elizabeth Platz is the principal investigator. She works closely with Dr. Corinne Joshu and The ARIC Cancer Working Group which is charged with developing protocols for adjudicating cancer endpoints and with prioritizing cancer research in ARIC.
Glycated Hemoglobin and Cancer Incidence and Mortality in the Atherosclerosis in Communities (ARIC) Study, 1990-2006

CE Joshu • AE Prizment • PJ Dluzniewski • A Menke • AR Folsom
J Coresh • HC Yeh • FL Brancati • EA Platz • E Selvin

Background: Diabetes is a risk factor for many cancers; chronic hyperglycemia is hypothesized to be, in part, explanatory.

Methods: We evaluated the association between glycated hemoglobin, a time-integrated glycemia measure, and cancer incidence and mortality in nondiabetic and diabetic men and women. We conducted a prospective study of 12,792 cancer-free participants attending the second visit (1990–1992) of the Atherosclerosis Risk in Communities (ARIC) Study.

Results: Compared with nondiabetic women with normal glycated hemoglobin, nondiabetic women with elevated values had an increased risk of cancer incidence and mortality as did diabetic women. Nondiabetic women with low values also had increased risk. Diabetic women with good glycemic control had a lower cancer risk than those with higher values. Glycated hemoglobin in nondiabetic and diabetic men, and diabetes were not statistically significantly associated with total cancer risk.

Conclusions: Our findings support the hypothesis that chronic hyperglycemia, even in the nondiabetic range, increases cancer risk in women. Maintaining normal glycated hemoglobin overall, and good glycemic control among diabetic adults, may reduce the burden of cancer, especially in women.
The Cardiovascular Health Study (CHS) is an observational study of risk factors for cardiovascular disease in adults 65 years or older that is funded by the National Heart, Lung and Blood Institute. The study is conducted four field centers, including Washington County, Maryland.

Starting in 1989, and continuing through 1999, participants underwent annual extensive clinical examinations. Measurements included traditional risk factors such as blood pressure and lipids as well as measures of subclinical disease, including echocardiography, carotid ultrasound, and cranial magnetic-resonance imaging (MRI).

At six-month intervals between clinic visits, and once clinic visits ended, participants were contacted by phone to ascertain hospitalizations and health status. The main outcomes are coronary heart disease, angina, heart failure, stroke, transient ischemic attack, claudication, and mortality. Participants continue to be followed for these events.

In 2006, surviving members of the cohort were invited to the clinic to participate in the “CHS All Stars” Study which examined physical and cognition function.

To date, more than 600 research papers from CHS have been published and more than 120 ancillary studies are ongoing or complete. Participants, now 87-100+ years, delight the staff with their willingness to be interviewed over the telephone semi-annually so that we can learn about the health and hospitalizations of this older population.
Objectives: To evaluate shared and unique risk factors for maintaining physical and cognitive function into the ninth decade and beyond. **Participants:** One thousand six hundred seventy-seven participants in the Cardiovascular Health Study All Stars Study, assessed in 2005/06. Median age was 85 (range 77-102), 66.5% were women, and 16.6% were black. **Measurements:** Intact function was defined as no difficulty with any activities of daily living and a score of 80 or higher on the Modified Mini-Mental State Examination. **Results:** Of the 1,677 participants evaluated in both domains, 891 (53%) were functionally intact. Continuous measures of function, including the Digit Symbol Substitution Test and gait speed, showed that all groups, including the most functional, had declined over time. The functional group had less decline but also tended to have higher starting values and a higher baseline health profile. Women and individuals with greater weight had higher rates of physical impairment but not cognitive impairment. Risk factors common to both types of impairment included cardiovascular disease and hypertension. **Conclusion:** Intact function was found in only approximately half of these older adults in the ninth decade and beyond. High baseline function and low vascular disease risk characterized functional aging.
The CLUE studies were conducted in 1974 and 1989, under the direction of Dr. George Comstock with funding from the National Cancer Institute (NCI). The name of the cohorts were adopted from the campaign slogans *Give Us a Clue to Cancer and Heart Disease*. CLUE follow-up for cancer events and scientific productivity has been uninterrupted for nearly 40 years.

Volunteer participants were recruited across the county and surrounding communities. In 1974, approximately 26,000 participants enrolled from May to November. Blood samples were processed and stored as serum. In 1989, approximately 33,000 individuals participated in CLUE II which was conducted under the leadership of Drs. Helzlsouer and Comstock. Plasma and buffy coat were stored from the blood samples, and toenail samples and dietary questionnaires were also collected. In 1996, the CLUE II cohort began active follow-up with periodic mailing of health questionnaires. A recent pilot study examined the feasibility of collecting survey data via phone and web in addition to mailings.

More than 9,100 of the participants in CLUE I also participated in CLUE II, with 8,400 forming the Odyssey Cohort.

The CLUE studies have contributed to the understanding of cancer as well as other chronic diseases and are an integral member of the Cohort Consortium of the National Cancer Institute. Drs. Helzlsouer and Gallicchio lead work on vitamin D and rare cancers. Dr. Alberg leads studies of skin cancer. Drs. Visvanathan and Kao co-direct cancer and genetic studies respectively. Clue staff continues to meticulously steward the datasets and large specimen bank, which is housed at Western Maryland Hospital Center.
DNA repair gene variants in relation to overall cancer risk: a population-based study

AJ Alberg • TJ Jorgenson • I Rusczinski • L Wheless • YY Shugart • Y Berthier-Schaad • B Kessing • J Hoffman-Bolton • KJ Helzlsouer • WH Kao • L Francis • RM Alani • MW Smith • FT Strickland

Abstract: The hypothesis that germ-line polymorphisms in DNA repair genes influence cancer risk has previously been tested primarily on a cancer site-specific basis. The purpose of this study was to test the hypothesis that DNA repair gene allelic variants contribute to globally elevated cancer risk by measuring associations with risk of all cancers that occurred within a population-based cohort. In the CLUE II cohort study established in 1989 in Washington County, MD, this study was comprised of all 3619 cancer cases ascertained through 2007 compared with a sample of 2296 with no cancer. Associations were measured between 759 DNA repair gene single nucleotide polymorphisms (SNPs) and risk of all cancers. A SNP was significantly associated with overall cancer risk. The association between rs2296675 and cancer risk was stronger among those aged ≤54 years old than those who were ≥55 years at baseline. OR were in the direction of increased risk for all 15 categories of malignancies studied, ranging from 1.22 for ovarian cancer to 2.01 for urinary tract cancers; the smallest P-value was for breast cancer. The results indicate that the minor allele of MGMT SNP rs2296675, a common genetic marker with 37% carriers, was significantly associated with increased risk of cancer across multiple tissues. Replication is needed to more definitively determine the scientific and public health significance of this observed association. Carcinogenesis (2012) doi: 10.1093

DNA Repair Gene Variants Associated with Benign Breast Disease in High Cancer Risk Women

TJ Jorgenson • KJ Helzlsouer • S Clipp • J Hoffman-Bolton • R Crum • K Visvanathan

Abstract: Benign breast disease (BBD) is a risk factor for breast cancer and may have a heritable component. Deficient DNA repair has been implicated in breast cancer etiology and may exert its effect before BBD, a known precursor. The association between allelic variants in DNA repair genes and BBD was examined in a cohort of women in Washington County, Maryland. BBD was defined by two criteria: (a) a physician diagnosis of BBD or fibrocystic disease and/or (b) a benign breast biopsy. 3,212 women without BBD at baseline were genotyped for 12 candidate single nucleotide polymorphisms in seven DNA repair genes. Of these women, 482 subsequently reported a diagnosis of BBD. The Cox model was used to calculate hazard ratios (HR). Variant alleles of XRCC1 Arg194Trp (rs1799782) and ERCC4 Arg1415Gln (rs1800067) were significantly associated with BBD [HR, 1.36; 95% confidence interval (95% CI), 1.06-1.74 and HR, 1.39; 95% CI, 1.09-1.76, respectively]. Similar estimates were also observed for each of the BBD criterion used. The BBD association for ERCC4 was even stronger among women with a family history of breast cancer (HR, 2.68; 95% CI, 1.52-4.66; PInteraction = 0.02). This study suggests that variant alleles in DNA repair genes may modify BBD risk, a potential intermediate marker of breast cancer risk, particularly among high-risk subgroups. Cancer Epidemiol Biomarkers Prev 2009;18(1):346–50
Under the leadership of Dr. Naresh Punjabi, through funding from the National Heart, Lung and Blood Institute, a series of studies are being conducted to examine the relationship between sleep apnea, chronic disease and health outcomes. Methodological innovations are pursued in collaborations with biostatisticians Swihart, Crainiceanu and Caffo.

The following studies have been completed, and publications are ongoing:

- **GlycOSA study**, a multicenter randomized controlled trial to assess the effectiveness of continuous positive airway pressure in improving glycemic control in type 2 diabetic patients with newly diagnosed obstructive sleep apnea.
- **The Sleep Heart Health Study (SHHS)**, a multicenter cohort study to determine cardiovascular and other consequences of sleep-disordered breathing. Results have demonstrated associations with hypertension, stroke, heart disease and mortality.
- The Heart Biomarker Evaluation in Apnea Treatment (**HeartBEAT**) study, a multicenter randomized controlled trial to compare the effects of nocturnal supplemental oxygen and positive airway pressure versus optimized medical management on biomarkers of cardiovascular risk.
- **SOMNOS** (Study of sleep, obesity and metabolism), a study to determine how moderate sleep apnea affects glucose metabolism.

SOMNOS 2 is currently recruiting patients to participate to examine whether abnormalities in sleep due to a condition called sleep apnea are related to glucose metabolism and how use of positive airway pressure (PAP) affects metabolism.
Sleep-Disordered Breathing and Mortality: A Prospective Cohort Study

NM Punjabi • BS Caffo • JL Goodwin • DJ Gottlieb
AB Newman • GT O’Connor • DM Rapoport • S Redline
HE Resnick • JA Robbins • E Shahar • ML Unruh • JM Samet

Background: Sleep-disordered breathing is a common condition associated with adverse health outcomes including hypertension and cardiovascular disease.

Methods and Findings: We prospectively examined whether sleep-disordered breathing was associated with an increased risk of death from any cause in 6,441 men and women participating in the Sleep Heart Health Study. The average follow-up period for the cohort was 8.2 years during which 1,047 participants (587 men and 460 women) died. Compared to those without sleep-disordered breathing, the fully adjusted hazard ratios for all-cause mortality in those with mild, moderate, and severe sleep-disordered breathing were 0.93 (95% CI: 0.80–1.08), 1.17 (95% CI: 0.97–1.42), and 1.46 (95% CI: 1.14–1.86), respectively. Stratified analyses by sex and age showed that the increased risk of death associated with severe sleep-disordered breathing was statistically significant in men aged 40–70 y (hazard ratio: 2.09; 95% CI: 1.31–3.33). Measures of sleep-related intermittent hypoxemia, but not sleep fragmentation, were independently associated with all-cause mortality. Coronary artery disease–related mortality associated with sleep disordered breathing showed a pattern of association similar to all-cause mortality.

Conclusions: Sleep-disordered breathing is associated with all-cause mortality and specifically that due to coronary artery disease, particularly in men aged 40–70 years with severe sleep-disordered breathing.
Mission
To collect the highest quality data with the goal of advancing disease prevention by bringing together participants, staff, students and scientists in a partnership between Johns Hopkins University and Washington County, Maryland.

Core Values
– Participant respect as the source and ultimate beneficiary of prevention research
– Data quality, integrity and privacy
– Science in the service of people: Win some victories for humanity, big or small

Goals for 2013
– Complete next steps in key studies: finish the ARIC 25-year follow-up and brain PET and MRI/MRA studies; start data collection in the ARIC cancer grants; complete the CLUE specimen bank upgrade
– Plan for post ARIC visit 5 optimal use of clinic space
– Develop new studies in public health priority areas: conduct pilot studies for a large community based study, possibly including an intervention, biologic specimen collection and remote data collection (i.e. mobile phones, accelerometers)
– Enhance partnerships with community health leaders: contribute to follow up of the community health assessment; start a prevention lecture series for a broad audience
– Continue to expand the network of active investigators writing grants and high impact publications
– Celebrate completing the George Comstock Professorship fund drive and use funds for innovative pilot studies
CORE FACULTY
Josef Coresh, MD, PhD (Epidemiology)
Michelle Carlson, PhD (Mental Hygiene)
Rebecca Gottesman, MD, PhD (Neurology)
Morgan Grams, MD, MHS (Nephrology)
Corinne E. Joshu, PhD, MPH (Epidemiology)
W. H. Linda Kao, PhD, MHS (Epidemiology)
Kunihiro Matsushita, MD, PhD (Epi.)
Mara M DeMarco, MHS, PhD (Epi.)
Chiadi Ndumele, MD, MHS (Cardiology)
Elizabeth Platz, ScD, MPH (Epidemiology)
Naresh M. Punjabi, MD, PhD (Medicine)
Kala Visvanathan, MBBS, MHS (Epi.)
Bruce Wasserman, MD (Radiology)

ASSOCIATES
Anthony Alberg, PhD, MPH,
(Medical University of South Carolina)
Lawrence Appel, MD, MPH (Medicine)
Frederick Brancati, MD, MHS (Medicine)
Kathy J. Helzlsouer, MD, MHS
(Mercy Medical Center and Johns Hopkins)
Erin Michos, MD, MHS (Cardiology)
Wendy Post, MD, MS (Cardiology)

AFFILIATED FACULTY AT JOHNS HOPKINS
Marilyn Albert, MD (Neurology)
Dan Arking, PhD (Human Genetics)
Alan Baer, MD (Rheumatology)
Terri Beaty, PhD (Epidemiology)
Karen Bandeen-Roche, MS, PhD (Biostatistics)
L. Ebony Boulware, MD, MPH (Medicine)
Kathryn Carson, ScM (Epidemiology)
David Celentano, ScD, MHS (Epidemiology)
Aravinda Chakravarti, PhD (Human Genetics)
Jeanne Clark, MD, MPH (Medicine)
Ciprian Crainiceanu, PhD (Biostatistics)
Marie Diener-West, PhD (Biostatistics)
Adrian Dobs, MD (Endocrinology)
Margaret Fallin, PhD (Epidemiology)
Lisa Gallicchio, PhD (Epidemiology)
Allan Gelber, MD, MPH (Rheumatology)
Eliseo Guallar, MD, DrPH (Epidemiology)
Sherita Hill Golden, MD, MHS (Medicine)
Marc Halushka, MD, PhD (Pathology)
Felicia Hill-Briggs, PhD (Medicine)
Anna Kottgen, MD, DrMed (Epidemiology)
Nisa Maruthur, MD, MHS (Medicine)
Edgar (Pete) Miller, MD, PhD (Medicine)
Ana Navas-Acien, MD, MPH (Environmental Health)
Ingo Ruczinski, PhD, MS (Biostatistics)
Stuart Russell, MD (Cardiology)
Robert Scharpf, PhD (Oncology)
Ola Selnes, MD (Neurology)
Elizabeth Selvin, PhD, MPH (Epidemiology)
A. Richey Sharrett, MD, PhD (Epidemiology)
Paul T. Strickland, PhD (Environmental Health)
Moyses Szklo, MD, DrPH (Epidemiology)
Larisa Tereshchenko, MD, PhD (Cardiology)
David Thiemann, MD (Medicine)
Jennifer Van Eyk, PhD (Cardiology Proteomics)
Mark Woodward, PhD (Epidemiology)
Hsin-Chieh (Jessica) Yeh, PhD (Medicine)
J. Hunter Young, MD, MHS (Medicine)

STUDENTS: Johns Hopkins Bloomberg School of Public Health, School of Medicine

Core faculty - Principal Investigators or supervisors of major projects at the Comstock Center in Hagerstown.
Associates - Principal Investigators or supervisors of major projects using Comstock Center data or staff where
the main project is based outside Hagerstown.
Affiliated faculty - Investigators playing a major role in projects or papers using data generated at Comstock
Center.
George Wills Comstock MD DrPH (1915–2007) was a world-renowned public health physician, epidemiologist and educator. He obtained his medical degree from Harvard in 1941, joined the U.S. Public Health Service in 1942, and during 21 years of service conducted seminal community-based research into tuberculosis control. In 1962, Dr. Comstock founded the Johns Hopkins Training Center for Public Health Research and Prevention in Washington County, Maryland.

For the next 42 years, Comstock led research studies on numerous public health problems, primarily cancer and heart disease. Dr. Comstock also served as editor-in-chief of the American Journal of Epidemiology from 1979 to 1988 and was on faculty of the Johns Hopkins Bloomberg School of Public Health for 50 years.

In 2005, the Hopkins center in Hagerstown was renamed The George W. Comstock Center for Public Health Research and Prevention. Dr. Comstock frequently quoted these words from Horace Mann: “I beseech you to treasure up in your hearts these my parting words: Be ashamed to die until you have won some victory for humanity.” This struck him as the main purpose of living; as Comstock said, “Most of us aren't going to win any big victories, but we can win little ones every day, and they mount up.”