Elevated Blood Lead Levels of Children at Age Three

Given Low Levels at Ages One and Two

Charles Aloe, MPH(c)
in collaboration with
Maryland’s Department of the Environment
and Johns Hopkins School of Medicine
Lead Hazard & Exposure

- Attributed to:
 - Learning disabilities
 - Shortened attention span
 - Lower IQ
 - Behavior problems
 - Growth delays
 - Damage to multiple organs
 - Death

- Deteriorating surfaces with lead-based paint
 - Paint flaking, chipping, peeling, and dusting
 - Windows, door frames, and porches
 - Contamination of house dust and residential surface soil

Source: Home*A*Syst
Susceptibility of Children

- **Ingestion**
 - most common route

- **Sociological risk**
 - crawl and play on the floor
 - put objects in their mouth (pica)

- **Physiological risk**
 - greater absorption due to developing body
 - less protection due to developing organ systems

Source: The LEAD Group Inc.
Blood Lead Tests

- Taken at well-child visits
 - Few distinguishable symptoms
 - Unless suspected exposures
- Venous test preferred over capillary
 - Medical lab draw sites
 - Health care provider offices
- Sent for analysis to blood lead laboratories
- Recorded in Childhood Lead Registry
- CDC & AAP recommends
 - Elevated blood lead (EBL) level = 10 μg/dL
 - 1991 - universal screening for ages 1 and 2
 - 1997 - statewide targeted screening
Maryland

- 1997 - Childhood Lead Screening Law
 - Collaborative effort of DHMH and MDE
- 2000 - Maryland Childhood Lead Screening Program
 - Managed by the Center for Maternal and Child Health
 - Identify at risk communities by census tract
 - Blood test for all children up to age six who had an affirmative answer to a lead risk questionnaire
- Universal testing for ages one and two living in risk area

<table>
<thead>
<tr>
<th>Risk</th>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
<th>Negligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Predicted EBL</td>
<td>>16%</td>
<td>5-16%</td>
<td>1-4%</td>
<td>unknown</td>
</tr>
<tr>
<td># Census Tracts</td>
<td>46</td>
<td>77</td>
<td>238</td>
<td>790</td>
</tr>
</tbody>
</table>
Methods

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>9-15</th>
<th>15-21</th>
<th>21-27</th>
<th>27-33</th>
<th>33-39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>1</td>
<td>not used</td>
<td>2</td>
<td>not used</td>
<td>3</td>
</tr>
<tr>
<td>Average BLL (μg/dL)</td>
<td>1.6</td>
<td>5.3</td>
<td>4.2</td>
<td>7.4</td>
<td>5.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Tests @ each Age</th>
<th>Single Test</th>
<th>Multiple @ Age 1 or 2</th>
<th>Multiple @ Age 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Tests</td>
<td>1,163</td>
<td>212</td>
<td>51</td>
<td>1,426</td>
</tr>
<tr>
<td>Children</td>
<td>1,163</td>
<td>100</td>
<td>22</td>
<td>1,285</td>
</tr>
</tbody>
</table>

- Venous over capillary, then test closest to actual birthday
- Follow-up testing:
 - age one to two: 23,000
 - age two to three: 4,300
Hypothesis

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLL (µg/dL)</td>
<td><10</td>
<td><10</td>
<td>≥10</td>
</tr>
<tr>
<td>%</td>
<td>100%</td>
<td>100%</td>
<td>1%</td>
</tr>
</tbody>
</table>

H₀: probability of EBL at age 3 ≥ 1%
Hₐ: probability of EBL at age 3 < 1%

Assumptions:
- All blood lead level (BLL) tests <10 at ages one and two
- Change in residency if blank
Results

Children at Age Three with BLL < 10 μg/dL at Ages One and Two

<table>
<thead>
<tr>
<th></th>
<th>Constant Residence</th>
<th>All Children</th>
<th>Moved Only @ Age 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>615</td>
<td>1285</td>
<td>185</td>
</tr>
<tr>
<td>BLL ≥ 10 μg/dL</td>
<td>6</td>
<td>17</td>
<td>5</td>
</tr>
</tbody>
</table>

![Graph showing percentage comparison between Constant Residence, All Children, and Moved Only @ Age 3]
Results

Children at Age Three with \(\text{BLL} < 10 \mu g/dL \) at Ages One and Two

<table>
<thead>
<tr>
<th></th>
<th>Constant Residence</th>
<th>All Children</th>
<th>Moved Only @ Age 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>615</td>
<td>1285</td>
<td>185</td>
</tr>
<tr>
<td>(\text{BLL} \geq 5 \mu g/dL)</td>
<td>86</td>
<td>211</td>
<td>33</td>
</tr>
</tbody>
</table>

Graph

- **Constant Residence**
- **All Children**
- **Moved Only @ Age 3**

- Chart showing percentages for the different residence status categories.
Results

Children at Age Three with BLL ≥ 5 μg/dL at Ages One and Two

<table>
<thead>
<tr>
<th></th>
<th>Constant Residence</th>
<th>All Children</th>
<th>Moved Only @ Age 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>42</td>
<td>100</td>
<td>14</td>
</tr>
<tr>
<td>BLL ≥ 5 μg/dL</td>
<td>27</td>
<td>57</td>
<td>8</td>
</tr>
</tbody>
</table>

![Graph showing constant residence, all children, and moved only at age 3 with BLL ≥ 5 μg/dL](image-url)
Results

Children at Age Three with BLL < 5 µg/dL at Ages One and Two

<table>
<thead>
<tr>
<th></th>
<th>Constant Residence</th>
<th>All Children</th>
<th>Moved Only @ Age 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>464</td>
<td>912</td>
<td>130</td>
</tr>
<tr>
<td>BLL ≥ 5 µg/dL</td>
<td>25</td>
<td>54</td>
<td>8</td>
</tr>
</tbody>
</table>

![Bar chart showing the percentage of children at different residence statuses in relation to BLL levels.]
Recommendations

Primary Prevention
- Anticipatory guidance through parental education
- Further lead abatement in old housing

Secondary Prevention
- Universal blood lead testing up to age three
- Targeted screening to consider change in residency

Future Studies
- Maryland prospective study
- Similar studies in other states