Skip Navigation

Faculty Directory

Jamie Perin, PhD

Assistant Scientist

Departmental Affiliation(s):

International Health

Center & Institute Affiliation(s):

Contact Information

E5612
615 N. Wolfe St.
Baltimore , Maryland
US        

410-955-3906

Google Scholar: http://scholar.google.com/citations?user=UCHDJDG34CAC&hl=en&oi=ao

SciVal Experts Research Profile

Education

PhD , 2009

Overview

My background is focused on statistical and quantitative research methodology in public health, including longitudinal and incomplete data, semi-parametric models, categorical data, clustered data, survival analysis, multiple imputation, and the EM algorithm.  I am driven principally by statistics in the service of international health research.  My current projects include modeling child mortality and the associations among infectious diseases, especially diarrhea and pneumonia relating to child health.

In global health and for underserved communities, what drives research and ultimately influences policy is founded on principals and assumptions that are quantitatively demonstrable.  I believe quantitative methods serve public health by facilitating evaluation and objectivity.  Likewise, I hope to contribute to the health of global communities through statistical application in the collaborative research environment.

international health, biostatistics, longitudinal data, missing data, child mortality, statistical epidemiology, diarrhea, child health

  • Li Liu, Qingfeng Li, Rose A. Lee, Ingrid K. Friberg, Jamie Perin, Neff Walker, Robert E. Black. 2011. “Trends in causes of death among children under 5 in Bangladesh, 1993-2004: an exercise applying a standardized computer algorithm to assign causes of death using verbal autopsy data”. Population Health Metrics. 9(1):43

  • Fischer Walker CL, Perin J, Aryee MJ, Boschi-Pinto C, Black RE.  2012.  Diarrhea incidence in low- and middle-income countries in 1990 and 2010: a systematic review.  BMC Public Health 12:220

     

  • Perin J, Preisser J, Rathouz P. Semi-parametric efficient estimator for incomplete longitudinal binary data with application to smoking trends. 2009. Journal of the American Statistical Association 104(488):1373-1384.

  • Preisser JS, Qaqish B,  Perin J. 2008. A note on deletion diagnostics for estimating equations. Biometrika 95(2):509-513

  • Perin J, Preisser JS, Qaqish B, Phillips C.  2014.  Regression analysis of correlated ordinal data using orthogonalized residuals.  Biometrics (accepted)